775 research outputs found
On the Development of a New Nonequilibrium Chemistry Model for Mars Entry
This paper represents a summary of results to date of an on-going effort at NASA Ames Research Center to develop a physics-based non-equilibrium model for hypersonic entry into the Martian atmosphere. Our approach is to first compute potential energy surfaces based on accurate solutions of the electronic Schroedinger equation and then use quasiclassical trajectory calculations to obtain reaction cross sections and rate coefficients based on these potentials. We have presented new rate coefficients for N2 dissociation and CO dissociation and exchange reactions. These results illustrate shortcomings with some of the rate coefficients in Parks original T-Tv model for Mars entries and with some of the 30-45 year old shock tube data. We observe that the shock tube experiments of CO + O dissociation did not adequately account for the exchange reaction that leads to formation of C + O2. This reaction is actually the primary channel for CO removal in the shock layer at temperatures below 10,000 K, because the reaction enthalpy for exchange is considerably lower than the comparable value for dissociation
Discovery of a TiO emission band in the infrared spectrum of the S star NP Aurigae
We report on the discovery of an infrared emission band in the Spitzer
spectrum of the S-type AGB star NP Aurigae that is caused by TiO molecules in
the circumstellar environment. We modelled the observed emission to derive the
temperature of the TiO molecules (\approx 600 K), an upper limit on the column
density (\approx 10^17.25 cm^{-2}) and a lower limit on the spatial extent of
the layer that contains these molecules. (\approx 4.6 stellar radii). This is
the first time that this TiO emission band is observed. A search for similar
emission features in the sample of S-type stars yielded two additional
candidates. However, owing to the additional dust emission, the identification
is less stringent. By comparing the stellar characteristics of NP Aur to those
of the other stars in our sample, we find that all stars with TiO emission show
large-amplitude pulsations, s-process enrichment, and a low C/O ratio. These
characteristics might be necessary requirements for a star to show TiO in
emission, but they are not sufficient.Comment: 4 pages, 4 figures, letter to the edito
Identification of the Beutler-Fano formula in eigenphase shifts and eigentime delays near a resonance
Eigenphase shifts and eigentime delays near a resonance for a system of one
discrete state and two continua are shown to be functionals of the Beutler-
Fano formulas using appropriate dimensionless energy units and line profile
indices. Parameters responsible for the avoided crossing of eigenphase shifts
and eigentime delays are identified. Similarly, parameters responsible for the
eigentime delays due to a frame change are identified. With the help of new
parameters, an analogy with the spin model is pursued for the S matrix and time
delay matrix. The time delay matrix is shown to comprise three terms, one due
to resonance, one due to a avoided crossing interaction, and one due to a frame
change. It is found that the squared sum of time delays due to the avoided
crossing interaction and frame change is unity.Comment: 17 pages, 3 figures, RevTe
The SEGUE Stellar Parameter Pipeline. III. Comparison with High-Resolution Spectroscopy of SDSS/SEGUE Field Stars
We report high-resolution spectroscopy of 125 field stars previously observed
as part of the Sloan Digital Sky Survey and its program for Galactic studies,
the Sloan Extension for Galactic Understanding and Exploration (SEGUE). These
spectra are used to measure radial velocities and to derive atmospheric
parameters, which we compare with those reported by the SEGUE Stellar Parameter
Pipeline (SSPP). The SSPP obtains estimates of these quantities based on SDSS
ugriz photometry and low-resolution (R = 2000) spectroscopy. For F- and G-type
stars observed with high signal-to-noise ratios (S/N), we empirically determine
the typical random uncertainties in the radial velocities, effective
temperatures, surface gravities, and metallicities delivered by the SSPP to be
2.4 km/s, 130 K (2.2%), 0.21 dex, and 0.11 dex, respectively, with systematic
uncertainties of a similar magnitude in the effective temperatures and
metallicities. We estimate random errors for lower S/N spectra based on
numerical simulations.Comment: 37 pages, 6 tables, 6 figures, submitted to the Astronomical Journa
D'Annunzio sulla scena lirica: libretto o "Poema"?
Australia Direct Action climate change policy relies on purchasing greenhouse gas abatement from projects undertaking approved abatement activities. Management of soil organic carbon (SOC) in agricultural soils is an approved activity, based on the expectation that land use change can deliver significant changes in SOC. However, there are concerns that climate, topography and soil texture will limit changes in SOC stocks. This work analyses data from 1482 sites surveyed across the major agricultural regions of Eastern Australia to determine the relative importance of land use vs. other drivers of SOC. Variation in land use explained only 1.4% of the total variation in SOC, with aridity and soil texture the main regulators of SOC stock under different land uses. Results suggest the greatest potential for increasing SOC stocks in Eastern Australian agricultural regions lies in converting from cropping to pasture on heavy textured soils in the humid regions
S66: A Well-balanced Database of Benchmark Interaction Energies Relevant to Biomolecular Structures
With numerous new quantum chemistry methods being developed in recent years and the promise of even more new methods to be developed in the near future, it is clearly critical that highly accurate, well-balanced, reference data for many different atomic and molecular properties be available for the parametrization and validation of these methods. One area of research that is of particular importance in many areas of chemistry, biology, and material science is the study of noncovalent interactions. Because these interactions are often strongly influenced by correlation effects, it is necessary to use computationally expensive high-order wave function methods to describe them accurately. Here, we present a large new database of interaction energies calculated using an accurate CCSD(T)/CBS scheme. Data are presented for 66 molecular complexes, at their reference equilibrium geometries and at 8 points systematically exploring their dissociation curves; in total, the database contains 594 points: 66 at equilibrium geometries, and 528 in dissociation curves. The data set is designed to cover the most common types of noncovalent interactions in biomolecules, while keeping a balanced representation of dispersion and electrostatic contributions. The data set is therefore well suited for testing and development of methods applicable to bioorganic systems. In addition to the benchmark CCSD(T) results, we also provide decompositions of the interaction energies by means of DFT-SAPT calculations. The data set was used to test several correlated QM methods, including those parametrized specifically for noncovalent interactions. Among these, the SCS-MI-CCSD method outperforms all other tested methods, with a root-mean-square error of 0.08 kcal/mol for the S66 data set
Measurement of Mass and Width of the W Boson at LEP
We report on measurements of the mass and total decay width of the W boson
with the L3 detector at LEP. W-pair events produced in
interactions between 161 GeV and 183 GeV centre-of-mass energy are selected in
a data sample corresponding to a total luminosity of 76.7 pb. Combining
all final states in W-pair production, the mass and total decay width of the W
boson are determined to be GeV and
GeV, respectively
Search for Heavy Neutral and Charged Leptons in ee Annihilation at = 183 and 189 GeV
A search for unstable neutral and charged heavy leptons as well as for stable
charged heavy leptons is performed at center-of-mass energies = 183
and 189 GeV with the L3 detector at LEP. No evidence for their existence is
found. We exclude neutral heavy leptons which couple to the electron, muon or
tau family, of the Dirac type for masses below 92.4, 93.3 and 83.3 GeV, and of
the Majorana type for masses below 81.8, 84.1 and 73.5 GeV, respectively. We
exclude unstable charged heavy leptons for masses below 93.9 GeV for a wide
range of the associated neutral heavy lepton mass. If the unstable charged
heavy lepton decays to a light neutrino, we exclude masses below 92.4 GeV. The
production of stable charged heavy leptons with mass less than 93.5 GeV is also
excluded
Measurement of an Elongation of the Pion Source in Z Decays
We measure Bose-Einstein correlations between like-sign charged pion pairs in
hadronic Z decays with the L3 detector at LEP. The analysis is performed in
three dimensions in the longitudinal center-of-mass system. The pion source is
found to be elongated along the thrust axis with a ratio of transverse to
longitudinal radius of
- âŠ