192 research outputs found
Differential Calculus on the Quantum Superspace and Deformation of Phase Space
We investigate non-commutative differential calculus on the supersymmetric
version of quantum space where the non-commuting super-coordinates consist of
bosonic as well as fermionic (Grassmann) coordinates. Multi-parametric quantum
deformation of the general linear supergroup, , is studied and the
explicit form for the -matrix, which is the solution of the
Yang-Baxter equation, is presented. We derive the quantum-matrix commutation
relation of and the quantum superdeterminant. We apply these
results for the to the deformed phase-space of supercoordinates and
their momenta, from which we construct the -matrix of q-deformed
orthosymplectic group and calculate its -matrix. Some
detailed argument for quantum super-Clifford algebras and the explict
expression of the -matrix will be presented for the case of
.Comment: 17 pages, KUCP-4
Jordanian Twist Quantization of D=4 Lorentz and Poincare Algebras and D=3 Contraction Limit
We describe in detail two-parameter nonstandard quantum deformation of D=4
Lorentz algebra , linked with Jordanian deformation of
. Using twist quantization technique we obtain
the explicit formulae for the deformed coproducts and antipodes. Further
extending the considered deformation to the D=4 Poincar\'{e} algebra we obtain
a new Hopf-algebraic deformation of four-dimensional relativistic symmetries
with dimensionless deformation parameter. Finally, we interpret
as the D=3 de-Sitter algebra and calculate the contraction
limit ( -- de-Sitter radius) providing explicit Hopf algebra
structure for the quantum deformation of the D=3 Poincar\'{e} algebra (with
masslike deformation parameters), which is the two-parameter light-cone
-deformation of the D=3 Poincar\'{e} symmetry.Comment: 13 pages, no figure
Quantum Deformed Algebra and Superconformal Algebra on Quantum Superspace
We study a deformed algebra on a quantum superspace. Some
interesting aspects of the deformed algebra are shown. As an application of the
deformed algebra we construct a deformed superconformal algebra. {}From the
deformed algebra, we derive deformed Lorentz, translation of
Minkowski space, and its supersymmetric algebras as closed
subalgebras with consistent automorphisms.Comment: 27 pages, KUCP-59, LaTeX fil
Design and Test of a Forward Neutron Calorimeter for the ZEUS Experiment
A lead scintillator sandwich sampling calorimeter has been installed in the
HERA tunnel 105.6 m from the central ZEUS detector in the proton beam
direction. It is designed to measure the energy and scattering angle of
neutrons produced in charge exchange ep collisions. Before installation the
calorimeter was tested and calibrated in the H6 beam at CERN where 120 GeV
electrons, muons, pions and protons were made incident on the calorimeter. In
addition, the spectrum of fast neutrons from charge exchange proton-lucite
collisions was measured. The design and construction of the calorimeter is
described, and the results of the CERN test reported. Special attention is paid
to the measurement of shower position, shower width, and the separation of
electromagnetic showers from hadronic showers. The overall energy scale as
determined from the energy spectrum of charge exchange neutrons is compared to
that obtained from direct beam hadrons.Comment: 45 pages, 22 Encapsulated Postscript figures, submitted to Nuclear
Instruments and Method
Quantum Groups, Gravity, and the Generalized Uncertainty Principle
We investigate the relationship between the generalized uncertainty principle
in quantum gravity and the quantum deformation of the Poincar\'e algebra. We
find that a deformed Newton-Wigner position operator and the generators of
spatial translations and rotations of the deformed Poincar\'e algebra obey a
deformed Heisenberg algebra from which the generalized uncertainty principle
follows. The result indicates that in the -deformed Poincar\'e algebra
a minimal observable length emerges naturally.Comment: 13 pages, IFUP-TH 19/93, May 1993 (revised Nov. 1993
Once again about quantum deformations of D=4 Lorentz algebra: twistings of q-deformation
This paper together with the previous one (arXiv:hep-th/0604146) presents the
detailed description of all quantum deformations of D=4 Lorentz algebra as Hopf
algebra in terms of complex and real generators. We describe here in detail two
quantum deformations of the D=4 Lorentz algebra o(3,1) obtained by twisting of
the standard q-deformation U_{q}(o(3,1)). For the first twisted q-deformation
an Abelian twist depending on Cartan generators of o(3,1) is used. The second
example of twisting provides a quantum deformation of Cremmer-Gervais type for
the Lorentz algebra. For completeness we describe also twisting of the Lorentz
algebra by standard Jordanian twist. By twist quantization techniques we obtain
for these deformations new explicit formulae for the deformed coproducts and
antipodes of the o(3,1)-generators.Comment: 17 page
Search for lepton-flavor violation at HERA
A search for lepton-flavor-violating interactions and has been performed with the ZEUS detector using the entire HERA I
data sample, corresponding to an integrated luminosity of 130 pb^{-1}. The data
were taken at center-of-mass energies, , of 300 and 318 GeV. No
evidence of lepton-flavor violation was found, and constraints were derived on
leptoquarks (LQs) that could mediate such interactions. For LQ masses below
, limits were set on , where
is the coupling of the LQ to an electron and a
first-generation quark , and is the branching ratio of
the LQ to the final-state lepton ( or ) and a quark . For
LQ masses much larger than , limits were set on the four-fermion
interaction term for LQs that couple to an electron and a quark
and to a lepton and a quark , where and are
quark generation indices. Some of the limits are also applicable to
lepton-flavor-violating processes mediated by squarks in -Parity-violating
supersymmetric models. In some cases, especially when a higher-generation quark
is involved and for the process , the ZEUS limits are the most
stringent to date.Comment: 37 pages, 10 figures, Accepted by EPJC. References and 1 figure (Fig.
6) adde
Multijet production in neutral current deep inelastic scattering at HERA and determination of alpha_s
Multijet production rates in neutral current deep inelastic scattering have
been measured in the range of exchanged boson virtualities 10 < Q2 < 5000 GeV2.
The data were taken at the ep collider HERA with centre-of-mass energy sqrt(s)
= 318 GeV using the ZEUS detector and correspond to an integrated luminosity of
82.2 pb-1. Jets were identified in the Breit frame using the k_T cluster
algorithm in the longitudinally invariant inclusive mode. Measurements of
differential dijet and trijet cross sections are presented as functions of jet
transverse energy E_{T,B}{jet}, pseudorapidity eta_{LAB}{jet} and Q2 with
E_{T,B}{jet} > 5 GeV and -1 < eta_{LAB}{jet} < 2.5. Next-to-leading-order QCD
calculations describe the data well. The value of the strong coupling constant
alpha_s(M_Z), determined from the ratio of the trijet to dijet cross sections,
is alpha_s(M_Z) = 0.1179 pm 0.0013(stat.) {+0.0028}_{-0.0046}(exp.)
{+0.0064}_{-0.0046}(th.)Comment: 22 pages, 5 figure
Measurement of (anti)deuteron and (anti)proton production in DIS at HERA
The first observation of (anti)deuterons in deep inelastic scattering at HERA
has been made with the ZEUS detector at a centre-of-mass energy of 300--318 GeV
using an integrated luminosity of 120 pb-1. The measurement was performed in
the central rapidity region for transverse momentum per unit of mass in the
range 0.3<p_T/M<0.7. The particle rates have been extracted and interpreted in
terms of the coalescence model. The (anti)deuteron production yield is smaller
than the (anti)proton yield by approximately three orders of magnitude,
consistent with the world measurements.Comment: 26 pages, 9 figures, 5 tables, submitted to Nucl. Phys.
Measurement of beauty production in deep inelastic scattering at HERA
The beauty production cross section for deep inelastic scattering events with
at least one hard jet in the Breit frame together with a muon has been
measured, for photon virtualities Q^2 > 2 GeV^2, with the ZEUS detector at HERA
using integrated luminosity of 72 pb^-1. The total visible cross section is
sigma_b-bbar (ep -> e jet mu X) = 40.9 +- 5.7 (stat.) +6.0 -4.4 (syst.) pb. The
next-to-leading order QCD prediction lies about 2.5 standard deviations below
the data. The differential cross sections are in general consistent with the
NLO QCD predictions; however at low values of Q^2, Bjorken x, and muon
transverse momentum, and high values of jet transverse energy and muon
pseudorapidity, the prediction is about two standard deviations below the data.Comment: 18 pages, 4 figure
- …