22 research outputs found

    The Earliest Stages of Isolated Low-Mass Star Formation

    Get PDF
    The knowledge of the initial conditions of low-mass star formation is a key to understand the process of protostellar collapse and protostar formation. This thesis focuses on the earliest stages of isolated low-mass star formation and covers spatial scales which spread over three orders of magnitude. It includes the study of a filament with a length of a few parsecs, down to the in-depth analysis of an isolated prestellar core, where structures of the order of a few hundred AU are resolved. In the first part, a NIR extinction map of the filament L 1495 reveals its small scale, highly fragmented structure, and a high star-forming potential in all its parts. In some regions, the initial filament collapse and fragmentation is still taking place and star formation is yet to occur, whereas in other parts, I identify a population of dense cores with separations of the order of the locals Jeans length, which are likely to collapse and form stars. The second part of the thesis focuses on the isolated core CB17, which hosts two sources at very different evolutionary stages (Class I vs. prestellar core) at a projected distance of only 5500AU. With the aid of FIR and (sub)mm observations of the dust emission, I determine its density and temperature structure and draw conclusions about the dust properties. Interferometric observations at high angular resolution reveal a complex velocity structure in the prestellar core, which might be result of interaction with the protostar

    The Earliest Stages of Isolated Low-Mass Star Formation

    Get PDF
    The knowledge of the initial conditions of low-mass star formation is a key to understand the process of protostellar collapse and protostar formation. This thesis focuses on the earliest stages of isolated low-mass star formation and covers spatial scales which spread over three orders of magnitude. It includes the study of a filament with a length of a few parsecs, down to the in-depth analysis of an isolated prestellar core, where structures of the order of a few hundred AU are resolved. In the first part, a NIR extinction map of the filament L 1495 reveals its small scale, highly fragmented structure, and a high star-forming potential in all its parts. In some regions, the initial filament collapse and fragmentation is still taking place and star formation is yet to occur, whereas in other parts, I identify a population of dense cores with separations of the order of the locals Jeans length, which are likely to collapse and form stars. The second part of the thesis focuses on the isolated core CB17, which hosts two sources at very different evolutionary stages (Class I vs. prestellar core) at a projected distance of only 5500AU. With the aid of FIR and (sub)mm observations of the dust emission, I determine its density and temperature structure and draw conclusions about the dust properties. Interferometric observations at high angular resolution reveal a complex velocity structure in the prestellar core, which might be result of interaction with the protostar

    A Major Asymmetric Dust Trap in a Transition Disk

    Full text link
    The statistics of discovered exoplanets suggest that planets form efficiently. However, there are fundamental unsolved problems, such as excessive inward drift of particles in protoplanetary disks during planet formation. Recent theories invoke dust traps to overcome this problem. We report the detection of a dust trap in the disk around the star Oph IRS 48 using observations from the Atacama Large Millimeter/submillimeter Array (ALMA). The 0.44-millimeter-wavelength continuum map shows high-contrast crescent-shaped emission on one side of the star originating from millimeter-sized grains, whereas both the mid-infrared image (micrometer-sized dust) and the gas traced by the carbon monoxide 6-5 rotational line suggest rings centered on the star. The difference in distribution of big grains versus small grains/gas can be modeled with a vortex-shaped dust trap triggered by a companion.Comment: 25 pages, 7 figures (accepted version prior to language editing

    The Initial Mass Function of the Stellar Association NGC 602 in the Small Magellanic Cloud with Hubble Space Telescope ACS Observations

    Full text link
    We present our photometric study of the stellar association NGC 602 in the wing of the Small Magellanic Cloud (SMC). The data were taken in the filters F555W and F814W using the Advanced Camera for Surveys (ACS) on-board the Hubble Space Telescope (HST). Photometry was performed using the ACS module of the stellar photometry package DOLPHOT. We detected more than 5,500 stars with a magnitude range of 14 \lsim m_{555} \lsim 28 mag. Three prominent stellar concentrations are identified with star counts in the observed field, the association NGC 602 itself, and two clusters, one of them not being currently in any known catalog. The Color-Magnitude Diagrams (CMDs) of both clusters show features typical for young open clusters, while that of the association reveals bright main sequence (MS) and faint pre-main sequence (PMS) stars as the members of the system. We construct the initial mass spectrum (IMS) of the association by applying an age-independent method of counting the PMS stars within evolutionary tracks, while for the bright MS stars we transform their magnitudes to masses with the use of mass-luminosity relations. The IMS of NGC 602 is found to be well represented by a single-power law, corresponding to an Initial Mass Function (IMF) of slope \Gamma\approx -1.2 for 1 \lsim M/M{\solar} \lsim 45. This indicates that the shape of the IMF of a star forming system in the SMC for stars with masses higher than 1 M{\solar} seems to be quite similar to the field IMF in the solar neighborhood.Comment: Accepted for publication in ApJ, 13 pages, 14 figures, emulateapj.cls LaTeX style, full resolution version available on http://www.astro.uni-bonn.de/~dgoulier/Science/NGC602/ms.pd

    Star Formation in the Taurus filament L 1495: from Dense Cores to Stars

    Get PDF
    We present a study of dense structures in the L1495 filament in the Taurus Molecular Cloud and examine its star-forming properties. In particular we construct a dust extinction map of the filament using deep near-infrared observations, exposing its small-scale structure in unprecedented detail. The filament shows highly fragmented substructures and a high mass-per-length value of Mline=17M⊙ pc−1M_{line} = 17 M \odot \ pc^{-1}, reflecting star-forming potential in all parts of it. However, a part of the filament, namely B211, is remarkably devoid of young stellar objects. We argue that in this region the initial filament collapse and fragmentation is still taking place and star formation is yet to occur. In the star-forming part of the filament, we identify 39 cores with masses from 0.4to10M⊙0.4 to 10 M \odot and preferred separations in agreement with the local Jeans length. Most of these cores exceed the Bonnor-Ebert critical mass, and are therefore likely to collapse and form stars. The Dense Core Mass Function follows a power law with exponent ⌈=1.2±0.2\lceil = 1.2 \pm 0.2, a form commonly observed in star-forming regions.Astronom

    L1448 IRS2E: A candidate first hydrostatic core

    Full text link
    Intermediate between the prestellar and Class 0 protostellar phases, the first core is a quasi-equilibrium hydrostatic object with a short lifetime and an extremely low luminosity. Recent MHD simulations suggest that the first core can even drive a molecular outflow before the formation of the second core (i.e., protostar). Using the Submillimeter Array and the Spitzer Space Telescope, we present high angular resolution observations towards the embedded dense core IRS2E in L1448. We find that source L1448 IRS2E is not visible in the sensitive Spitzer infrared images (at wavelengths from 3.6 to 70 um), and has weak (sub-)millimeter dust continuum emission. Consequently, this source has an extremely low bolometric luminosity (< 0.1 L_sun). Infrared and (sub-)millimeter observations clearly show an outflow emanating from this source; L1448 IRS2E represents thus far the lowest luminosity source known to be driving a molecular outflow. Comparisons with prestellar cores and Class 0 protostars suggest that L1448 IRS2E is more evolved than prestellar cores but less evolved than Class 0 protostars, i.e., at a stage intermediate between prestellar cores and Class 0 protostars. All these results are consistent with the theoretical predictions of the radiative/magneto hydrodynamical simulations, making L1448 IRS2E the most promising candidate of the first hydrostatic core revealed so far.Comment: 20 pages, 4 figures, to be published by Ap

    SMA and Spitzer Observations of Bok Glouble CB17: A Candidate First Hydrostatic Core?

    Full text link
    We present high angular resolution SMA and Spitzer observations toward the Bok globule CB17. SMA 1.3mm dust continuum images reveal within CB17 two sources with an angular separation of about 21" (about 5250 AU at a distance of 250 pc). The northwestern continuum source, referred to as CB17 IRS, dominates the infrared emission in the Spitzer images, drives a bipolar outflow extending in the northwest-southeast direction, and is classified as a low luminosity Class0/I transition object (L_bol ~ 0.5 L_sun). The southeastern continuum source, referred to as CB17 MMS, has faint dust continuum emission in the SMA 1.3mm observations (about 6 sigma detection; ~3.8 mJy), but is not detected in the deep Spitzer infrared images at wavelengths from 3.6 to 70 micron. Its bolometric luminosity and temperature, estimated from its spectral energy distribution, are less than 0.04 L_sun and 16 K, respectively. The SMA CO(2-1) observations suggest that CB17 MMS may drive a low-velocity molecular outflow (about 2.5 km/s), extending in the east-west direction. Comparisons with prestellar cores and Class0 protostars suggest that CB17 MMS is more evolved than prestellar cores but less evolved than Class0 protostars. The observed characteristics of CB17 MMS are consistent with the theoretical predictions from radiative/magneto hydrodynamical simulations of a first hydrostatic core, but there is also the possibility that CB17 MMS is an extremely low luminosity protostar deeply embedded in an edge-on circumstellar disk. Further observations are needed to study the properties of CB17 MMS and to address more precisely its evolutionary stage.Comment: 33 pages, 11 figures, to be published by Ap

    Perceptual and Memorial Contributions to Developmental Prosopagnosia

    Get PDF
    Developmental prosopagnosia (DP) is commonly associated with the failure to properly perceive individuating facial properties, notably those conveying configural or holistic content. While this may indicate that the primary impairment is perceptual, it is conceivable that some cases of DP are instead caused by a memory impairment, with any perceptual complaint merely allied rather than causal. To investigate this possibility, we administered a battery of face perception tasks to 11 individuals who reported that their face recognition difficulties disrupt daily activity and who also performed poorly on two formal tests of face recognition. Group statistics identified, relative to age- and gender-matched controls, difficulties in apprehending global-local relations and the holistic properties of faces, and in matching across viewpoints, but these were mild in nature and were not consistently evident at the level of individual participants. Six of the 11 individuals failed to show any evidence of perceptual impairment. In the remaining five individuals, no single perceptual deficit, or combination of deficits, was necessary or sufficient for poor recognition performance. These data suggest that some cases of DP are better explained by a memorial rather than perceptual deficit, and highlight the relevance of the apperceptive/associative distinction more commonly applied to the allied syndrome of acquired prosopagnosia

    The Mid-infrared E-ELT Imager and Spectrograph (METIS)

    Get PDF
    METIS will be among the first generation of scientific instruments on the E-ELT. Focusing on highest angular resolution and high spectral resolution, METIS will provide diffraction limited imaging and coronagraphy from 3-14um over an 20"x20" field of view, as well as integral field spectroscopy at R ~ 100,000 from 2.9-5.3um. In addition, METIS provides medium-resolution (R ~ 5000) long slit spectroscopy, and polarimetric measurements at N band. While the baseline concept has already been discussed, this paper focuses on the significant developments over the past two years in several areas: The science case has been updated to account for recent progress in the main science areas circum-stellar disks and the formation of planets, exoplanet detection and characterization, Solar system formation, massive stars and clusters, and star formation in external galaxies. We discuss the developments in the adaptive optics (AO) concept for METIS, the telescope interface, and the instrument modelling. Last but not least, we provide an overview of our technology development programs, which ranges from coronagraphic masks, immersed gratings, and cryogenic beam chopper to novel approaches to mirror polishing, background calibration and cryo-cooling. These developments have further enhanced the design and technology readiness of METIS to reliably serve as an early discovery machine on the E-ELT.Comment: 18 pages, 14 figures, paper presented at the conference 'Astronomical Telescopes and Instrumentation' in Montreal (2014

    An ammonia spectral map of the L1495-B218 filaments in the Taurus molecular cloud. I. Physical properties of filaments and dense cores

    Get PDF
    We present deep NH3 observations of the L1495-B218 filaments in the Taurus molecular cloud covering over a 3° angular range using the K-band focal plane array on the 100 m Green Bank Telescope. The L1495-B218 filaments form an interconnected, nearby, large complex extending over 8 pc. We observed NH3 (1, 1) and (2, 2) with a spectral resolution of 0.038 km s−1 and a spatial resolution of 31''. Most of the ammonia peaks coincide with intensity peaks in dust continuum maps at 350 and 500 μm. We deduced physical properties by fitting a model to the observed spectra. We find gas kinetic temperatures of 8–15 K, velocity dispersions of 0.05–0.25 km s−1, and NH3 column densities of 5 × 1012 to 1 × 1014 cm−2. The CSAR algorithm, which is a hybrid of seeded-watershed and binary dendrogram algorithms, identifies a total of 55 NH3 structures, including 39 leaves and 16 branches. The masses of the NH3 sources range from 0.05 to 9.5 M⊙{{M}_{\odot }}. The masses of NH3 leaves are mostly smaller than their corresponding virial mass estimated from their internal and gravitational energies, which suggests that these leaves are gravitationally unbound structures. Nine out of 39 NH3 leaves are gravitationally bound, and seven out of nine gravitationally bound NH3 leaves are associated with star formation. We also found that 12 out of 30 gravitationally unbound leaves are pressure confined. Our data suggest that a dense core may form as a pressure-confined structure, evolve to a gravitationally bound core, and undergo collapse to form a protostar
    corecore