311 research outputs found

    Exact Results for Hamiltonian Walks from the Solution of the Fully Packed Loop Model on the Honeycomb Lattice

    Full text link
    We derive the nested Bethe Ansatz solution of the fully packed O(nn) loop model on the honeycomb lattice. From this solution we derive the bulk free energy per site along with the central charge and geometric scaling dimensions describing the critical behaviour. In the n=0n=0 limit we obtain the exact compact exponents γ=1\gamma=1 and ν=1/2\nu=1/2 for Hamiltonian walks, along with the exact value κ2=33/4\kappa^2 = 3 \sqrt 3 /4 for the connective constant (entropy). Although having sets of scaling dimensions in common, our results indicate that Hamiltonian walks on the honeycomb and Manhattan lattices lie in different universality classes.Comment: 12 pages, RevTeX, 3 figures supplied on request, ANU preprint MRR-050-9

    In--out intermittency in PDE and ODE models

    Get PDF
    We find concrete evidence for a recently discovered form of intermittency, referred to as in--out intermittency, in both PDE and ODE models of mean field dynamos. This type of intermittency (introduced in Ashwin et al 1999) occurs in systems with invariant submanifolds and, as opposed to on--off intermittency which can also occur in skew product systems, it requires an absence of skew product structure. By this we mean that the dynamics on the attractor intermittent to the invariant manifold cannot be expressed simply as the dynamics on the invariant subspace forcing the transverse dynamics; the transverse dynamics will alter that tangential to the invariant subspace when one is far enough away from the invariant manifold. Since general systems with invariant submanifolds are not likely to have skew product structure, this type of behaviour may be of physical relevance in a variety of dynamical settings. The models employed here to demonstrate in--out intermittency are axisymmetric mean--field dynamo models which are often used to study the observed large scale magnetic variability in the Sun and solar-type stars. The occurrence of this type of intermittency in such models may be of interest in understanding some aspects of such variabilities.Comment: To be published in Chaos, June 2001, also available at http://www.eurico.web.co

    Integration of radiation oncology teaching in medical studies by German medical faculties due to the new licensing regulations: an overview and recommendations of the consortium academic radiation oncology of the German Society for Radiation Oncology (DEGRO)

    Get PDF
    The new Medical Licensing Regulations 2025 (Ärztliche Approbationsordnung, ÄApprO) will soon be passed by the Federal Council (Bundesrat) and will be implemented step by step by the individual faculties in the coming months. The further development of medical studies essentially involves an orientation from fact-based to competence-based learning and focuses on practical, longitudinal and interdisciplinary training. Radiation oncology and radiation therapy are important components of therapeutic oncology and are of great importance for public health, both clinically and epidemiologically, and therefore should be given appropriate attention in medical education. This report is based on a recent survey on the current state of radiation therapy teaching at university hospitals in Germany as well as the contents of the National Competence Based Learning Objectives Catalogue for Medicine 2.0 (Nationaler Kompetenzbasierter Lernzielkatalog Medizin 2.0, NKLM) and the closely related Subject Catalogue (Gegenstandskatalog, GK) of the Institute for Medical and Pharmaceutical Examination Questions (Institut für Medizinische und Pharmazeutische Prüfungsfragen, IMPP). The current recommendations of the German Society for Radiation Oncology (Deutsche Gesellschaft für Radioonkologie, DEGRO) regarding topics, scope and rationale for the establishment of radiation oncology teaching at the respective faculties are also included

    Radiation-induced melting in coherent X-ray diffractive imaging at the nanoscale

    Get PDF
    Coherent X-ray diffraction techniques play an increasingly significant role in imaging nanoscale structures which range from metallic and semiconductor samples to biological objects. The conventional knowledge about radiation damage effects caused by ever higher brilliance X-ray sources has to be critically revised while studying nanostructured materials
    corecore