360 research outputs found

    Redox‐controlled preservation of organic matter during “OAE 3” within the Western Interior Seaway

    Full text link
    During the Cretaceous, widespread black shale deposition occurred during a series of Oceanic Anoxic Events (OAEs). Multiple processes are known to control the deposition of marine black shales, including changes in primary productivity, organic matter preservation, and dilution. OAEs offer an opportunity to evaluate the relative roles of these forcing factors. The youngest of these events—the Coniacian to Santonian OAE 3—resulted in a prolonged organic carbon burial event in shallow and restricted marine environments including the Western Interior Seaway. New high‐resolution isotope, organic, and trace metal records from the latest Turonian to early Santonian Niobrara Formation are used to characterize the amount and composition of organic matter preserved, as well as the geochemical conditions under which it accumulated. Redox sensitive metals (Mo, Mn, and Re) indicate a gradual drawdown of oxygen leading into the abrupt onset of organic carbon‐rich (up to 8%) deposition. High Hydrogen Indices (HI) and organic carbon to total nitrogen ratios (C:N) demonstrate that the elemental composition of preserved marine organic matter is distinct under different redox conditions. Local changes in δ13C indicate that redox‐controlled early diagenesis can also significantly alter δ13Corg records. These results demonstrate that the development of anoxia is of primary importance in triggering the prolonged carbon burial in the Niobrara Formation. Sea level reconstructions, δ18O results, and Mo/total organic carbon ratios suggest that stratification and enhanced bottom water restriction caused the drawdown of bottom water oxygen. Increased nutrients from benthic regeneration and/or continental runoff may have sustained primary productivity.Key PointsBottom water redox changes triggered carbon burial within the WIS during OAE 3Anoxia developed due to O2 drawdown in a stratified water columnRedox‐controlled changes in OM preservation altered primary δ13Corg signalsPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/112294/1/palo20210.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/112294/2/palo20210-sup-0001-SupportingInfo.pd

    An impulse response function for the "long tail" of excess atmospheric CO<sub>2</sub> in an Earth system model

    Get PDF
    The ultimate fate of (fossil fuel) CO emitted to the atmosphere is governed by a range of sedimentological and geological processes operating on timescales of up to the ca. hundred thousand year response of the silicate weathering feedback. However, how the various geological CO sinks might saturate and feedbacks weaken in response to increasing total emissions is poorly known. Here we explore the relative importance and timescales of these processes using a 3-D ocean-based Earth system model. We first generate an ensemble of 1 Myr duration CO decay curves spanning cumulative emissions of up to 20,000 Pg C. To aid characterization and understanding of the model response to increasing emission size, we then generate an impulse response function description for the long-term fate of CO in the model. In terms of the process of carbonate weathering and burial, our analysis is consistent with a progressively increasing fraction of total emissions that are removed from the atmosphere as emissions increase, due to the ocean carbon sink becoming saturated, together with a lengthening of the timescale of removal from the atmosphere. However, we find that in our model the ultimate CO sink - silicate weathering feedback - is approximately invariant with respect to cumulative emissions, both in terms of its importance (it removes the remaining excess ~7% of total emissions from the atmosphere) and timescale (~270 kyr). Because a simple pulse-response description leads to initially large predictive errors for a realistic time-varying carbon release, we also develop a convolution-based description of atmospheric CO decay which can be used as a simple and efficient means of making long-term carbon cycle perturbation projections. Key Points An ensemble of CO pulse emissions are modeled using an Earth system model Our impulse response function projects the atmospheric lifetime of emitted CO We characterize how the marine CO sinks tend to saturate at very high emissions. 2 2 2 2 2 2 2 2

    Historicising Material Agency: from Relations to Relational Constellations

    Get PDF
    Relational approaches have gradually been changing the face of archaeology over the last decade: analytically, through formal network analysis; and interpretively, with various frameworks of human-thing relations. Their popularity has been such, however, that it threatens to undermine their relevance. If everyone agrees that we should understand past worlds by tracing relations, then ‘finding relations’ in the past becomes a self-fulfilling prophecy. Focusing primarily on the interpretive approaches of material culture studies, this article proposes to counter the threat of irrelevance by not just tracing human-thing relations, but characterising how sets of relations were ordered. Such ordered sets are termed ‘relational constellations’. The article describes three relational constellations and their consequences based on practices of fine ware production in the Western Roman provinces (first century BC – third century AD): the fluid, the categorical, and the rooted constellation. Specifying relational constellations allows reconnecting material culture to specific historical trajectories, and offers scope for meaningful cross-cultural comparisons. As such a small theoretical addition based on the existing toolbox of practice-based approaches and relational thought can impact on historical narratives, and can save relational frameworks from the danger of triviality.This is the author accepted manuscript. The final version is available from Springer via http://dx.doi.org/10.1007/s10816-015-9244-

    The pathophysiology of fluid and electrolyte balance in the older adult surgical patient

    Get PDF
    Background & aims: Age-related physiological changes predispose even the healthy older adult to fluid and electrolyte abnormalities which can cause morbidity and mortality. The aim of this narrative review is to highlight key aspects of age-related pathophysiological changes that affect fluid and electrolyte balance in older adults and underpin their importance in the perioperative period. Methods: The Web of Science, MEDLINE, PubMed and Google Scholar databases were searched using key terms for relevant studies published in English on fluid balance in older adults during the 15 years preceding June 2013. Randomised controlled trials and large cohort studies were sought; other studieswere used when these were not available. The bibliographies of extracted papers were also searched for relevant articles. Results: Older adults are susceptible to dehydration and electrolyte abnormalities, with causes ranging from physical disability restricting access to fluid intake to iatrogenic causes including polypharmacy and unmonitored diuretic usage. Renal senescence, as well as physical and mental decline, increase this susceptibility. Older adults are also predisposed to water retention and related electrolyte abnormalities, exacerbated at times of physiological stress. Positive fluid balance has been shown to be an independent risk factor for morbidity and mortality in critically ill patients with acute kidney injury. Conclusions: Age-related pathophysiological changes in the handling of fluid and electrolytes make older adults undergoing surgery a high-risk group and an understanding of these changes will enable better management of fluid and electrolyte therapy in the older adult

    Persistent Place-Making in Prehistory: the Creation, Maintenance, and Transformation of an Epipalaeolithic Landscape

    Get PDF
    Most archaeological projects today integrate, at least to some degree, how past people engaged with their surroundings, including both how they strategized resource use, organized technological production, or scheduled movements within a physical environment, as well as how they constructed cosmologies around or created symbolic connections to places in the landscape. However, there are a multitude of ways in which archaeologists approach the creation, maintenance, and transformation of human-landscape interrelationships. This paper explores some of these approaches for reconstructing the Epipalaeolithic (ca. 23,000–11,500&nbsp;years BP) landscape of Southwest Asia, using macro- and microscale geoarchaeological approaches to examine how everyday practices leave traces of human-landscape interactions in northern and eastern Jordan. The case studies presented here demonstrate that these Epipalaeolithic groups engaged in complex and far-reaching social landscapes. Examination of the Early and Middle Epipalaeolithic (EP) highlights that the notion of “Neolithization” is somewhat misleading as many of the features we use to define this transition were already well-established patterns of behavior by the Neolithic. Instead, these features and practices were enacted within a hunter-gatherer world and worldview
    • …
    corecore