124 research outputs found
Neospora caninum immunoblotting improves serodiagnosisof bovine neosporosis
Neospora caninum ranges among the major causes of infectious abortion in cattle worldwide. The present study was designed to improve the serodiagnostic tools by complementing a conventional ELISA with a highly sensitive and species-specific N. caninum immunoblot. To evaluate this test combination, sera from several groups of cows were tested. The first group, consisting of experimentally infected calves, showed that immunoblot antibody reactivities were detectable 1 to 3days earlier than those found in ELISA. The first immunodominant bands that appeared were a 29-kDa (NcSAG1) and a 36-kDa (NcSRS2) antigen. Other groups, based upon naturally infected cattle, were used to compare the diagnostic sensitivity of ELISA and immunoblotting. Overall, N. caninum immunoblotting exhibited a higher sensitivity (98%) than ELISA (87%). Conversely, immunoblotting also confirm in two other cases, true transient negativation in some animals. In general, banding patterns and band staining intensity correlated to the semiquantitative ELISA findings. On the other hand, the banding pattern could not be used to discriminate between sera from animals with a recent abortion and those of cows with latent N. caninum infection. We also addressed putative cross-reactions due to infection with Toxoplasma gondii. Sera from animals with a serologically proven T. gondii infection were either clearly negative by Neospora immunoblotting or they yielded a specific immunoblot antibody profile indicating a double infection with N. caninum. Sera from animals with positive findings in both Toxoplasma and Neospora ELISA thus provided dichotomic results in the immunoblot by allowing to confirm or to rule out the specificity of the antibody reaction in Neospora ELISA. Altogether, our findings demonstrate that N. caninum immunoblotting is a very sensitive and specific complementary tool to improve the serology for N. caninum infections in cattl
First record of besnoitiosis caused by Besnoitia bennetti in donkeys from the UK
Background: The involvement of Besnoitia bennetti in skin pathologies was investigated in a series of 20 donkeys from the Donkey Sanctuary in England, in the 2013-2019 period. Methods: The initial histopathological finding of Besnoitia cysts in skin lumps that were presumed to be sarcoids in 2013 triggered our cognisance of this parasite and resulted in identification of a total of 20 cases. Histopathological examination of surgical biopsy samples collected from 8 live donkeys and tissue specimens from 12 deceased donkeys at post-mortem examination revealed the presence of Besnoitia cysts in all 20 donkeys. The indirect fluorescent antibody test (IFAT) and immunoblotting analysis showed the presence of anti-Besnoitia antibodies in archived serum samples from 4 deceased donkeys. Additionally, infection was evidenced in one live donkey based on IFAT and immunoblot analysis of tissue fluid of a dermal mass containing Besnoitia cysts, and real-time (RT)-PCR analysis and microsatellite genotyping of DNA isolated from the tissue of the same dermal mass confirmed the infection specifically as B. bennetti. Results: Both serological and microsatellite analyses confirmed the aetiology to be B. bennetti. Our findings suggested that in cases of skin masses such as sarcoids, the suspicion of B. bennetti infection should be borne in mind even when clinical and histopathology examination results are negative in order to avoid misdiagnosis. Conclusions: This case series documents, to our knowledge, the first report of B. bennetti infection in donkeys in the UK, indicating that donkey besnoitiosis has become noteworthy in the UK. Further investigations of the occurrence, epidemiological characteristics, and clinical manifestations of B. bennetti infection in donkeys and other equids are warranted.[Figure not available: see fulltext.
SEROLOGICAL SURVEY OF TOXOPLASMOSIS, NEOSPOROSIS AND BRUCELLOSIS AMONG CATTLE HERDS IN OYO STATE, SOUTH-WESTERN NIGERIA
Background: Several zoonotic diseases are known to constitute great impediment to livestock management and
production worldwide, especially in developing countries where control measures are largely non-existent. This study
sets out to investigate the occurrence of toxoplasmosis, neosporosis and brucellosis among cattle herds in Oyo State,
southwest Nigeria.
Materials and Methods: A cross-sectional survey to screen for antibodies to Toxoplasma gondii, Neospora caninum
and Brucella abortus was conducted among 174 cattle in 17 herds. Sera obtained from the cattle were screened for
antibodies to Toxoplasma gondii and Neospora caninum using enzyme-linked immunosorbent assay (ELISA) and for
Brucella abortus antibodies using Rose Bengal test and Competitive Enzyme Linked Immunosorbent Assay (cELISA).
Results: Overall, herd level prevalence of 52.9%, 23.5% and 23.5% as well as individual prevalence of 7.5%, 3.4%
and 3.4% was obtained for toxoplasmosis, neosporosis and brucellosis, respectively. Antibodies to T. gondii, N.
caninum and B. abortus were detected in 2 of the 17 herds, T. gondii and N. caninum in 4 herds, and T. gondii and B.
abortus in 4 herds. Statistically significant association was only found between seropositivity to T. gondii antibodies
and sex (
Expanding the Known Repertoire of C-Type Lectin Receptors Binding to Toxoplasma gondii Oocysts Using a Modified High-Resolution Immunofluorescence Assay
The environmental stage of the apicomplexan Toxoplasma gondii oocyst is vital to its life cycle but largely understudied. Because oocysts are excreted only by infected felids, their availability for research is limited. We report the adaptation of an agarose-based method to immobilize minute amounts of oocysts to perform immunofluorescence assays. Agarose embedding allows high-resolution confocal microscopy imaging of antibodies binding to the oocyst surface as well as unprecedented imaging of intracellular sporocyst structures with Maclura pomifera agglutinin after on-slide permeabilization of the immobilized oocysts. To identify new possible molecules binding to the oocyst surface, we used this method to screen a library of C-type lectin receptor (CLR)-human IgG constant region fusion proteins from the group of related CLRs called the Dectin-1 cluster against oocysts. In addition to CLEC7A that was previously reported to decorate T. gondii oocysts, we present experimental evidence for specific binding of three additional CLRs to the surface of this stage. We discuss how these CLRs, known to be expressed on neutrophils, dendritic cells, or macrophages, could be involved in the early immune response by the host, such as oocyst antigen uptake in the intestine. In conclusion, we present a modified immunofluorescence assay technique that allows material-saving immunofluorescence microscopy with T. gondii oocysts in a higher resolution than previously published, which allowed us to describe three additional CLRs binding specifically to the oocyst surface.
IMPORTANCE Knowledge of oocyst biology of Toxoplasma gondii is limited, not the least due to its limited availability. We describe a method that permits us to process minute amounts of oocysts for immunofluorescence microscopy without compromising their structural properties. This method allowed us to visualize internal structures of sporocysts by confocal microscopy in unprecedented quality. Moreover, the method can be used as a low- to medium-throughput method to screen for molecules interacting with oocysts, such as antibodies, or compounds causing structural damage to oocysts (i.e., disinfectants). Using this method, we screened a small library of C-type lectin receptors (CLRs) present on certain immune cells and found three CLRs able to decorate the oocyst wall of T. gondii and which were not known before to bind to oocysts. These tools will allow further study into oocyst wall composition and could also provoke experiments regarding immunological recognition of oocysts.Peer Reviewe
Detection of Toxoplasma gondii-specific antibodies in pigs using an oral fluid-based commercial ELISA: Advantages and limitations
Toxoplasma gondii is a major food-borne parasite and undercooked meat of infected pigs represents an important source of infection for humans. Since infections in pigs are mostly subclinical, adequate diagnostic tests for use at the farm level are pursued. Oral fluid (OF) was shown to be a promising matrix for direct and indirect detection of infections with various pathogens in pigs. The objective of this study was to assess whether T. gondii infections in pigs could be diagnosed using an indirect ELISA kit adapted for OF samples (OF-ELISA). Routine serology and OF-immunoblot (IB) were used as standards for the comparison. For this, serial OF samples from sows (n = 8) and fatteners (n = 3) experimentally inoculated with T. gondii oocysts, individual field samples from potentially exposed sows (n = 9) and pooled OF samples from potentially exposed group-housed fatteners (n = 195 pig groups, including 2,248 animals) were analysed for antibodies against T. gondii by ELISA. For individual animals, OF-ELISA exhibited a relative diagnostic specificity of 97.3% and a relative diagnostic sensitivity of 78.8%. In experimentally infected animals, positive OF-ELISA results were observed from 1.5 weeks post inoculation (pi) until the end of the experimental setup (8 to 30 weeks pi); however, values below the estimated cut-off were occasionally observed in some animals despite constant seropositivity. In potentially exposed individual animals, OF- and serum-ELISA results showed 100% agreement. In group-housed fatteners, antibodies against T. gondii could be reliably detected by OF-ELISA in groups in which at least 25% of the animals were seropositive. This OF-ELISA, based on a commercially available serum-ELISA, may represent an interesting non-invasive screening tool for detecting pig groups with a high exposure to T. gondii at the farm level. The OF-ELISA may need further adjustments to consistently detect individual infected pigs, probably due to variations in OF antibody concentration over time
Detection of Toxoplasma gondii-specific antibodies in pigs using an oral fluid-based commercial ELISA: advantages and limitations.
Toxoplasma gondii is a major food-borne parasite and undercooked meat of infected pigs represents an important source of infection for humans. Since infections in pigs are mostly subclinical, adequate diagnostic tests for use at the farm level are pursued. Oral fluid (OF) was shown to be a promising matrix for direct and indirect detection of infections with various pathogens in pigs. The objective of this study was to assess whether T. gondii infections in pigs could be diagnosed using an indirect ELISA kit adapted for OF samples (OF-ELISA). Routine serology and OF-immunoblot (IB) were used as standards for the comparison. For this, serial OF samples from sows (n = 8) and fatteners (n = 3) experimentally inoculated with T. gondii oocysts, individual field samples from potentially exposed sows (n = 9) and pooled OF samples from potentially exposed group-housed fatteners (n = 195 pig groups, including 2,248 animals) were analysed for antibodies against T. gondii by ELISA. For individual animals, OF-ELISA exhibited a relative diagnostic specificity of 97.3% and a relative diagnostic sensitivity of 78.8%. In experimentally infected animals, positive OF-ELISA results were observed from 1.5 weeks post inoculation (pi) until the end of the experimental setup (8 to 30 weeks pi); however, values below the estimated cut-off were occasionally observed in some animals despite constant seropositivity. In potentially exposed individual animals, OF- and serum-ELISA results showed 100% agreement. In group-housed fatteners, antibodies against T. gondii could be reliably detected by OF-ELISA in groups in which at least 25% of the animals were seropositive. This OF-ELISA, based on a commercially available serum-ELISA, may represent an interesting non-invasive screening tool for detecting pig groups with a high exposure to T. gondii at the farm level. The OF-ELISA may need further adjustments to consistently detect individual infected pigs, probably due to variations in OF antibody concentration over time
Switzerland-wide Neospora caninum seroprevalence in female cattle and identification of risk factors for infection.
INTRODUCTION
Neospora caninum is an important cause of abortion in cattle worldwide. Infection in cattle occurs horizontally by ingestion of oocysts shed by canids or vertically, from an infected dam to the fetus, and may result in abortion, stillbirth, or birth of seropositive offspring. The control of bovine neosporosis is difficult and costly. The objectives of this study were to estimate the current nationwide seroprevalence of N. caninum infections in Swiss cattle and to assess risk factors for infection with this parasite.
METHODS
We conducted a cross-sectional study with cattle farms randomly selected and stratified according to population size, resulting in a sample of 780 female cattle. The cattle originated from 161 farms distributed over all Switzerland. The serum samples were tested for antibodies against N. caninum using a commercial ELISA and if inconclusive, retested using an in-house immunoblot technique. To collect farm parameters relevant to N. caninum transmission and prevention, farm owners were mailed a questionnaire which addressed topics putatively related to N. caninum infection such as husbandry, history of abortion, and presence of dogs on farm. Univariate analysis by generalized linear mixed model (with animal seropositivity as outcome variable) and logistic regression modeling (with farm seropositivity as outcome variable) was conducted on farm parameters investigated in the questionnaire.
RESULTS
By ELISA and immunoblot, 4.2% (33/780) of cattle sera yielded positive results. At the farm level, 16.2% (26/161) of the sampled farms had at least one seropositive animal. The return rate of the valid questionnaires was 54.0%. At the animal level, odds for farm seropositivity were 3.8 times higher when rodents had been recorded by the farmer as a problem on the farm. At the farm-level, two protective factors were identified: rearing of replacement heifers and feeding of concentrated feed.
CONCLUSION
We recorded a low seroprevalence of N. caninum in a random sample of Swiss cattle representative for the years 2017-2018. Based on a questionnaire survey, we could identify risk and protective factors for infection with N. caninum, however their biological relevance needs to be confirmed in further studies
Seroprevalence of Neospora caninum-specific antibodies in German breeding bitches
Background: Neospora caninum is an intracellular obligate apicomplexan parasite responsible for multisystemic lesions in dogs. Being definitive hosts and reservoirs, dogs excrete environmentally resistant oocysts. Breeding bitches represent a susceptible dog group and infected bitches may spread this parasite through transplacental transmission.
Results: A total of 218 serum samples of German breeding bitches were collected to determine the presence of N. caninum. Antibodies were detected in 16 (7.33%) bitches using a commercial indirect enzyme-linked immunosorbent assay (ELISA). Immunoblotting analysis confirmed all seropositive samples detected by ELISA, proving that the animals were infected with N. caninum. The owners were interviewed regarding breed, age, environment, type, vaccine status, feeding habits and the presence of reproductive disorders. Seropositive animals were between the ages of two to seven years; three of them were kept in kennels while the others were household dogs, one of which was additionally a hunting dog. Owners of four seropositive bitches reported one gestation, while multiple pregnancies had been recorded for the other twelve bitches. Fourteen bitches were regularly vaccinated and six were fed with fresh raw meat.
Conclusions: Although the results confirmed a low incidence of N. caninum seropositive German breeding bitches, further epidemiological and surveillance studies are required to complement our findings regarding the current situation of neosporosis in this specific canine population of Germany
Toxoplasma gondii and Neospora caninum infections in sheep and goats in Switzerland: Seroprevalence and occurrence in aborted foetuses.
Toxoplasma gondii and Neospora caninum infections are important causes of abortion in ruminants. Besides, meat from T. gondii infected animals represent a major infection source for humans. The occurrence of these protozoan parasites in Switzerland was investigated both, in a nationwide cross-sectional serological survey, and by molecular methods in aborted sheep and goat foetuses. A total of 653 sheep from 143 farms and 748 goats from 164 farms were tested by commercial ELISAs and inconclusive results were defined by immunoblot. Besides, a risk factor analysis for seropositivity was performed. The observed seroprevalences for T. gondii in sheep and goats were 66.3% and 50.5% at the animal level, and 90.9% and 81.1% at the farm level, respectively. For N. caninum, the detected seroprevalences in sheep and goats were 0.8% and 0.9% at the animal level, and 2.8% and 1.8% at the farm level, respectively. Older small ruminants, and sheep (vs. goats) had a higher risk of being seropositive to T. gondii. Alpine grazing in summer was identified as a protective factor for seropositivity to T. gondii in both animal species. Toxoplasma gondii and N. caninum DNA were detected in 6.1% and 2.4% (n = 82), and in 6.8% and 1.4% (n = 73) of the tested ovine and caprine foetuses, respectively. These results suggest the involvement of these parasites in abortions and reveal a high prevalence of T. gondii and lower prevalence of N. caninum infections in small ruminants in Switzerland. They also suggest that consumption of undercooked meat from T. gondii infected sheep and goats may represent a risk for public health
- …