96 research outputs found

    The Borexino detector at the Laboratori Nazionali del Gran Sasso

    Full text link
    Borexino, a large volume detector for low energy neutrino spectroscopy, is currently running underground at the Laboratori Nazionali del Gran Sasso, Italy. The main goal of the experiment is the real-time measurement of sub MeV solar neutrinos, and particularly of the mono energetic (862 keV) Be7 electron capture neutrinos, via neutrino-electron scattering in an ultra-pure liquid scintillator. This paper is mostly devoted to the description of the detector structure, the photomultipliers, the electronics, and the trigger and calibration systems. The real performance of the detector, which always meets, and sometimes exceeds, design expectations, is also shown. Some important aspects of the Borexino project, i.e. the fluid handling plants, the purification techniques and the filling procedures, are not covered in this paper and are, or will be, published elsewhere (see Introduction and Bibliography).Comment: 37 pages, 43 figures, to be submitted to NI

    New limits on nucleon decays into invisible channels with the BOREXINO Counting Test Facility

    Get PDF
    The results of background measurements with the second version of the BOREXINO Counting Test Facility (CTF-II), installed in the Gran Sasso Underground Laboratory, were used to obtain limits on the instability of nucleons, bounded in nuclei, for decays into invisible channels (invinv): disappearance, decays to neutrinos, etc. The approach consisted of a search for decays of unstable nuclides resulting from NN and NNNN decays of parents 12^{12}C, 13^{13}C and 16^{16}O nuclei in the liquid scintillator and the water shield of the CTF. Due to the extremely low background and the large mass (4.2 ton) of the CTF detector, the most stringent (or competitive) up-to-date experimental bounds have been established: τ(ninv)>1.81025\tau(n \to inv) > 1.8 \cdot 10^{25} y, τ(pinv)>1.11026\tau(p \to inv) > 1.1 \cdot 10^{26} y, τ(nninv)>4.91025\tau(nn \to inv) > 4.9 \cdot 10^{25} y and τ(ppinv)>5.01025\tau(pp \to inv) > 5.0 \cdot 10^{25} y, all at 90% C.L.Comment: 22 pages, 3 figures,submitted to Phys.Lett.

    Science and technology of BOREXINO: A Real time detector for low-energy solar neutrinos: A Real Time Detector for Low Energy Solar Neutrinos

    Get PDF
    BOREXINO, a real-time device for low energy neutrino spectroscopy is nearing completion of construction in the underground laboratories at Gran Sasso, Italy (LNGS). The experiment's goal is the direct measurement of the flux of 7Be solar neutrinos of all flavors via neutrino-electron scattering in an ultra-pure scintillation liquid. Seeded by a series of innovations which were brought to fruition by large scale operation of a 4-ton test detector at LNGS, a new technology has been developed for BOREXINO. It enables sub-MeV solar neutrino spectroscopy for the first time. This paper describes the design of BOREXINO, the various facilities essential to its operation, its spectroscopic and background suppression capabilities and a prognosis of the impact of its results towards resolving the solar neutrino problem. BOREXINO will also address several other frontier questions in particle physics, astrophysics and geophysics

    Measurements of extremely low radioactivity levels in BOREXINO

    Full text link
    The techniques researched, developed and applied towards the measurement of radioisotope concentrations at ultra-low levels in the real-time solar neutrino experiment BOREXINO at Gran Sasso are presented and illustrated with specific results of widespread interest. We report the use of low-level germanium gamma spectrometry, low-level miniaturized gas proportional counters and low background scintillation detectors developed in solar neutrino research. Each now sets records in its field. We additionally describe our techniques of radiochemical ultra-pure, few atom manipulations and extractions. Forefront measurements also result from the powerful combination of neutron activation and low-level counting. Finally, with our techniques and commercially available mass spectrometry and atomic absorption spectroscopy, new low-level detection limits for isotopes of interest are obtained.Comment: 27 pages, 5 figures. Submitted to Astroparticle Physics (17 Sep 2001). Spokesperson of the Borexino Collaboration: G. Bellini. Corresponding author: W. Hampe

    Study of neutrino electromagnetic properties with the prototype of the Borexino detector

    Get PDF
    Abstract The results of background measurements with the prototype of the Borexino detector (CTF) have been used to obtain an upper bound on the neutrino magnetic moment, µ ν . The new upper limit for µ ν from pp and 7 Be solar neutrinos is (5.5 × 10 −10 )µ B (90% c.l.) in the Standard Solar Model scenario. This is the first limit on µ ν obtained using sub-MeV neutrinos. The sensitivity of the prototype to the neutrino charge radius and the neutrino radiative decay are also presented

    Genetic differentiation of Artemia franciscana (Kellogg, 1906) in Kenyan coastal saltworks

    No full text
    The nature of genetic divergence between the Artemia population native to San Francisco Bay, (SFB) USA and those from the introductions of SFB material in the Kenyan coast two decades ago were investigated using the mitochondrial DNA (mtDNA) and heat shock protein 70 (Hsp70) gene molecular markers. The DNA was extracted from 80 single Artemia cysts using the Chelex protocol. The 1,500 bp fragment of the 12S - 16S region of the mtDNA and a 1,935 bp fragment of the Hsp70 gene were amplified through Polymerase Chain Reaction (PCR) followed by Restriction Fragment Length Polymorphism (RFLP) digestion using appropriate endonucleases. The mtDNA analysis indicated higher haplotype diversity (0.76 ± 0.07) in Artemia from Fundisha saltworks while the rest of the samples were monomorphic. A private haplotype (AAABBA) in Fundisha samples confirmed a molecular evidence of a systematic genetic differentiation albeit in an insignificant manner (P > 0.05). There was molecular evidence of coexistence of SFB and GSL Artemia strains in Fundisha saltworks. The monomorphic DNA fingerprint in Kensalt Artemia cysts was probably caused by non-sequential Artemia culture system and limited mtDNA fragment size analysed. The Hsp70 gene RFLP fingerprint did not show any unique gene signatures in the Kenyan Artemia samples suggesting that other factors other than Hsp70 were involved in their superior thermotolerance. Further genetical studies based on the larger mtDNA fragment using robust genetic markers are recommended. Ecological studies of the heat shock protein family and the stress response would be more relevant than the qualitative RFLP technique

    Simultaneous measurement of gamma rays and radon emission (SIMGRAE) for solid samples radioactivity assessment

    No full text
    A gamma/radon high-sensitivity radioactivity counter has been built in the frame of a research and development aimed at assessing the effect of construction materials on the annual radioactive dose absorbed by individuals. The counter features simultaneous gamma measurement (by high-resolution germanium spectroscopy) and radon evaluation through electrostatic collection and alpha spectroscopy of radon daughters
    corecore