311 research outputs found

    Unresected screen-detected ductal carcinoma in situ: Outcomes of 311 women in the Forget-Me-Not 2 study.

    Get PDF
    BACKGROUND AND AIM: The natural history of ductal carcinoma in situ (DCIS) is poorly understood. The aim of this cohort study was to determine the outcomes of women who had no surgery for screen-detected DCIS in the 6 months following diagnosis. METHODS: English breast screening databases were retrospectively searched for women diagnosed with DCIS without invasive cancer at screening and who had no record of surgery within 6 months of diagnosis. These were cross-referenced with cancer registry data. Details of the potentially eligible women were sent to the relevant breast screening units for verification and for completion of data forms detailing clinical, radiological and pathological findings, non-surgical treatment and subsequent clinical course. RESULTS: Data for 311 eligible women (median age 62 years) were available. 60 women developed invasive cancer, 56 ipsilateral and 4 contralateral. Ipsilateral invasion risk increased approximately linearly with time for at least 10 years. The 10-year cumulative risk of ipsilateral invasion was 9% (95% CI 4-21%), 39% (24-58%) and 36% (24-50%) for low, intermediate and high grade DCIS respectively and was higher in younger women, in those with larger DCIS lesions and in those with microinvasion. Most invasive cancers that developed were grade 2 or 3. CONCLUSION: The findings suggest that active surveillance may be a reasonable alternative to surgery in patients with low grade DCIS but that women with intermediate or high grade disease should continue to be offered surgery. This highlights the importance of reproducible grading of DCIS to ensure patients receive appropriate treatment

    Hypofractionated breast radiotherapy for 1 week versus 3 weeks (FAST-Forward): 5-year efficacy and late normal tissue effects results from a multicentre, non-inferiority, randomised, phase 3 trial.

    Get PDF
    BACKGROUND: We aimed to identify a five-fraction schedule of adjuvant radiotherapy (radiation therapy) delivered in 1 week that is non-inferior in terms of local cancer control and is as safe as an international standard 15-fraction regimen after primary surgery for early breast cancer. Here, we present 5-year results of the FAST-Forward trial. METHODS: FAST-Forward is a multicentre, phase 3, randomised, non-inferiority trial done at 97 hospitals (47 radiotherapy centres and 50 referring hospitals) in the UK. Patients aged at least 18 years with invasive carcinoma of the breast (pT1-3, pN0-1, M0) after breast conservation surgery or mastectomy were eligible. We randomly allocated patients to either 40 Gy in 15 fractions (over 3 weeks), 27 Gy in five fractions (over 1 week), or 26 Gy in five fractions (over 1 week) to the whole breast or chest wall. Allocation was not masked because of the nature of the intervention. The primary endpoint was ipsilateral breast tumour relapse; assuming a 2% 5-year incidence for 40 Gy, non-inferiority was predefined as ≤1·6% excess for five-fraction schedules (critical hazard ratio [HR] of 1·81). Normal tissue effects were assessed by clinicians, patients, and from photographs. This trial is registered at isrctn.com, ISRCTN19906132. FINDINGS: Between Nov 24, 2011, and June 19, 2014, we recruited and obtained consent from 4096 patients from 97 UK centres, of whom 1361 were assigned to the 40 Gy schedule, 1367 to the 27 Gy schedule, and 1368 to the 26 Gy schedule. At a median follow-up of 71·5 months (IQR 71·3 to 71·7), the primary endpoint event occurred in 79 patients (31 in the 40 Gy group, 27 in the 27 Gy group, and 21 in the 26 Gy group); HRs versus 40 Gy in 15 fractions were 0·86 (95% CI 0·51 to 1·44) for 27 Gy in five fractions and 0·67 (0·38 to 1·16) for 26 Gy in five fractions. 5-year incidence of ipsilateral breast tumour relapse after 40 Gy was 2·1% (1·4 to 3·1); estimated absolute differences versus 40 Gy in 15 fractions were -0·3% (-1·0 to 0·9) for 27 Gy in five fractions (probability of incorrectly accepting an inferior five-fraction schedule: p=0·0022 vs 40 Gy in 15 fractions) and -0·7% (-1·3 to 0·3) for 26 Gy in five fractions (p=0·00019 vs 40 Gy in 15 fractions). At 5 years, any moderate or marked clinician-assessed normal tissue effects in the breast or chest wall was reported for 98 of 986 (9·9%) 40 Gy patients, 155 (15·4%) of 1005 27 Gy patients, and 121 of 1020 (11·9%) 26 Gy patients. Across all clinician assessments from 1-5 years, odds ratios versus 40 Gy in 15 fractions were 1·55 (95% CI 1·32 to 1·83, p<0·0001) for 27 Gy in five fractions and 1·12 (0·94 to 1·34, p=0·20) for 26 Gy in five fractions. Patient and photographic assessments showed higher normal tissue effect risk for 27 Gy versus 40 Gy but not for 26 Gy versus 40 Gy. INTERPRETATION: 26 Gy in five fractions over 1 week is non-inferior to the standard of 40 Gy in 15 fractions over 3 weeks for local tumour control, and is as safe in terms of normal tissue effects up to 5 years for patients prescribed adjuvant local radiotherapy after primary surgery for early-stage breast cancer. FUNDING: National Institute for Health Research Health Technology Assessment Programme

    Association of DCIS Size and Margin Status With Risk of Developing Breast Cancer Post-Treatment: Multinational, Pooled Cohort Study

    Get PDF
    OBJECTIVE: To examine the association between size and margin status of ductal carcinoma in situ (DCIS) and risk of developing ipsilateral invasive breast cancer and ipsilateral DCIS after treatment, and stage and subtype of ipsilateral invasive breast cancer. DESIGN: Multinational, pooled cohort study. SETTING: Four large international cohorts. PARTICIPANTS: Patient level data on 47 695 women with a diagnosis of pure, primary DCIS between 1999 and 2017 in the Netherlands, UK, and US who underwent surgery, either breast conserving or mastectomy, often followed by radiotherapy or endocrine treatment, or both. MAIN OUTCOME MEASURES: The main outcomes were 10 year cumulative incidence of ipsilateral invasive breast cancer and ipsilateral DCIS estimated in relation to DCIS size and margin status, and adjusted hazard ratios and 95% confidence intervals, estimated using multivariable Cox proportional hazards analyses with multiple imputed data RESULTS: The 10 year cumulative incidence of ipsilateral invasive breast cancer was 3.2%. In women who underwent breast conserving surgery with or without radiotherapy, only adjusted risks for ipsilateral DCIS were significantly increased for larger DCIS (20-49 mm) compared with DCIS(hazard ratio 1.38, 95% confidence interval 1.11 to 1.72). Risks for both ipsilateral invasive breast cancer and ipsilateral DCIS were significantly higher with involved compared with clear margins (invasive breast cancer 1.40, 1.07 to 1.83; DCIS 1.39, 1.04 to 1.87). Use of adjuvant endocrine treatment was not significantly associated with a lower risk of ipsilateral invasive breast cancer compared to treatment with breast conserving surgery only (0.86, 0.62 to 1.21). In women who received breast conserving treatment with or without radiotherapy, higher DCIS grade was not significantly associated with ipsilateral invasive breast cancer, only with a higher risk of ipsilateral DCIS (grade 1: 1.42, 1.08 to 1.87; grade 3: 2.17, 1.66 to 2.83). Higher age at diagnosis was associated with lower risk (per year) of ipsilateral DCIS (0.98, 0.97 to 0.99) but not ipsilateral invasive breast cancer (1.00, 0.99 to 1.00). Women with large DCIS (≥50 mm) more often developed stage III and IV ipsilateral invasive breast cancer compared to women with DCISfound. CONCLUSIONS: The association of DCIS size and margin status with ipsilateral invasive breast cancer and ipsilateral DCIS was small. When these two factors were added to other known risk factors in multivariable models, clinicopathological risk factors alone were found to be limited in discriminating between low and high risk DCIS

    Contralateral breast cancer risk in patients with ductal carcinoma in situ and invasive breast cancer

    Get PDF
    We aimed to assess contralateral breast cancer (CBC) risk in patients with ductal carcinoma in situ (DCIS) compared with invasive breast cancer (BC). Women diagnosed with DCIS (N = 28,003) or stage I–III BC (N = 275,836) between 1989 and 2017 were identified from the nationwide Netherlands Cancer Registry. Cumulative incidences were estimated, accounting for competing risks, and hazard ratios (HRs) for metachronous invasive CBC. To evaluate effects of adjuvant systemic therapy and screening, separate analyses were performed for stage I BC without adjuvant systemic therapy and by mode of first BC detection. Multivariable models including clinico-pathological and treatment data were created to assess CBC risk prediction performance in DCIS patients. The 10- year cumulative incidence of invasive CBC was 4.8% for DCIS patients (CBC = 1334). Invasive CBC risk was higher in DCIS patients compared with invasive BC overall (HR = 1.10, 95% confidence interval (CI) = 1.04–1.17), and lower compared with stage I BC without adjuvant systemic therapy (HR = 0.87; 95% CI = 0.82–0.92). In patients diagnosed ≥2011, the HR for invasive CBC was 1.38 (95% CI = 1.35–1.68) after screen-detected DCIS compared with screen-detected invasive BC, and was 2.14 (95% CI = 1.46–3.13) when not screen-detected. The C-index was 0.52 (95% CI = 0.50–0.54) for invasive CBC prediction in DCIS patients. In conclusion, CBC risks are low overall. DCIS patients had a slightly higher risk of invasive CBC compared with invasive BC, likely explained by the risk-reducing effect of (neo)adjuvant systemic therapy among BC patients. For support of clinical decision making more information is needed to differentiate CBC risks among DCIS patient

    COVID-19 Risk Factors for Cancer Patients: A First Report with Comparator Data from COVID-19 Negative Cancer Patients

    Get PDF
    none32siSimple SummaryThe COVID-19 pandemic has had a detrimental impact on cancer patients globally. Whilst there are several studies looking at the potential risk factors for COVID-19 disease and related death, most of these include non-cancerous patients as the COVID-19 negative comparator group, meaning it is difficult to draw hard conclusions as to the implications for cancer patients. In our study, we utilized data from over 2000 cancer patients from a large tertiary Cancer Centre in London. In summary, our study found that patients who are male, of Black or Asian ethnicity, or with a hematological malignancy are at an increased risk of COVID-19. The use of cancer patients as the COVID-19 negative comparator group is a major advantage to the study as it means we can better understand the true impact of COVID-19 on cancer patients and identify which factors pose the biggest risk to their likelihood of infection with SARS-CoV2.Very few studies investigating COVID-19 in cancer patients have included cancer patients as controls. We aimed to identify factors associated with the risk of testing positive for SARS CoV2 infection in a cohort of cancer patients. We analyzed data from all cancer patients swabbed for COVID-19 between 1(st) March and 31(st) July 2020 at Guy's Cancer Centre. We conducted logistic regression analyses to identify which factors were associated with a positive COVID-19 test. Results: Of the 2152 patients tested for COVID-19, 190 (9%) tested positive. Male sex, black ethnicity, and hematological cancer type were positively associated with risk of COVID-19 (OR = 1.85, 95%CI:1.37-2.51; OR = 1.93, 95%CI:1.31-2.84; OR = 2.29, 95%CI:1.45-3.62, respectively) as compared to females, white ethnicity, or solid cancer type, respectively. Male, Asian ethnicity, and hematological cancer type were associated with an increased risk of severe COVID-19 (OR = 3.12, 95%CI:1.58-6.14; OR = 2.97, 95%CI:1.00-8.93; OR = 2.43, 95%CI:1.00-5.90, respectively). This study is one of the first to compare the risk of COVID-19 incidence and severity in cancer patients when including cancer patients as controls. Results from this study have echoed those of previous reports, that patients who are male, of black or Asian ethnicity, or with a hematological malignancy are at an increased risk of COVID-19.openRussell, Beth; Moss, Charlotte L; Palmer, Kieran; Sylva, Rushan; D'Souza, Andrea; Wylie, Harriet; Haire, Anna; Cahill, Fidelma; Steel, Renee; Hoyes, Angela; Wilson, Isabelle; Macneil, Alyson; Shifa, Belul; Monroy-Iglesias, Maria J; Papa, Sophie; Irshad, Sheeba; Ross, Paul; Spicer, James; Kordasti, Shahram; Crawley, Danielle; Zaki, Kamarul; Sita-Lumsden, Ailsa; Josephs, Debra; Enting, Deborah; Swampillai, Angela; Sawyer, Elinor; Fields, Paul; Wrench, David; Rigg, Anne; Sullivan, Richard; Van Hemelrijck, Mieke; Dolly, SaoirseRussell, Beth; Moss, Charlotte L; Palmer, Kieran; Sylva, Rushan; D'Souza, Andrea; Wylie, Harriet; Haire, Anna; Cahill, Fidelma; Steel, Renee; Hoyes, Angela; Wilson, Isabelle; Macneil, Alyson; Shifa, Belul; Monroy-Iglesias, Maria J; Papa, Sophie; Irshad, Sheeba; Ross, Paul; Spicer, James; Kordasti, Shahram; Crawley, Danielle; Zaki, Kamarul; Sita-Lumsden, Ailsa; Josephs, Debra; Enting, Deborah; Swampillai, Angela; Sawyer, Elinor; Fields, Paul; Wrench, David; Rigg, Anne; Sullivan, Richard; Van Hemelrijck, Mieke; Dolly, Saoirs

    Genomic evolution of breast cancer metastasis and relapse

    Get PDF
    A.G.L. and J.H.R.F. were supported by a Cancer Research UK Program Grant to Simon Tavaré (C14303/A17197).Patterns of genomic evolution between primary and metastatic breast cancer have not been studied in large numbers, despite patients with metastatic breast cancer having dismal survival. We sequenced whole genomes or a panel of 365 genes on 299 samples from 170 patients with locally relapsed or metastatic breast cancer. Several lines of analysis indicate that clones seeding metastasis or relapse disseminate late from primary tumors, but continue to acquire mutations, mostly accessing the same mutational processes active in the primary tumor. Most distant metastases acquired driver mutations not seen in the primary tumor, drawing from a wider repertoire of cancer genes than early drivers. These include a number of clinically actionable alterations and mutations inactivating SWI-SNF and JAK2-STAT3 pathways.Publisher PDFPeer reviewe

    BRCA2 polymorphic stop codon K3326X and the risk of breast, prostate, and ovarian cancers

    Get PDF
    Background: The K3326X variant in BRCA2 (BRCA2*c.9976A&gt;T; p.Lys3326*; rs11571833) has been found to be associated with small increased risks of breast cancer. However, it is not clear to what extent linkage disequilibrium with fully pathogenic mutations might account for this association. There is scant information about the effect of K3326X in other hormone-related cancers. Methods: Using weighted logistic regression, we analyzed data from the large iCOGS study including 76 637 cancer case patients and 83 796 control patients to estimate odds ratios (ORw) and 95% confidence intervals (CIs) for K3326X variant carriers in relation to breast, ovarian, and prostate cancer risks, with weights defined as probability of not having a pathogenic BRCA2 variant. Using Cox proportional hazards modeling, we also examined the associations of K3326X with breast and ovarian cancer risks among 7183 BRCA1 variant carriers. All statistical tests were two-sided. Results: The K3326X variant was associated with breast (ORw = 1.28, 95% CI = 1.17 to 1.40, P = 5.9x10- 6) and invasive ovarian cancer (ORw = 1.26, 95% CI = 1.10 to 1.43, P = 3.8x10-3). These associations were stronger for serous ovarian cancer and for estrogen receptor–negative breast cancer (ORw = 1.46, 95% CI = 1.2 to 1.70, P = 3.4x10-5 and ORw = 1.50, 95% CI = 1.28 to 1.76, P = 4.1x10-5, respectively). For BRCA1 mutation carriers, there was a statistically significant inverse association of the K3326X variant with risk of ovarian cancer (HR = 0.43, 95% CI = 0.22 to 0.84, P = .013) but no association with breast cancer. No association with prostate cancer was observed. Conclusions: Our study provides evidence that the K3326X variant is associated with risk of developing breast and ovarian cancers independent of other pathogenic variants in BRCA2. Further studies are needed to determine the biological mechanism of action responsible for these associations

    Performance of automated scoring of ER, PR, HER2, CK5/6 and EGFR in breast cancer tissue microarrays in the Breast Cancer Association Consortium

    Get PDF
    Breast cancer risk factors and clinical outcomes vary by tumour marker expression. However, individual studies often lack the power required to assess these relationships, and large-scale analyses are limited by the need for high throughput, standardized scoring methods. To address these limitations, we assessed whether automated image analysis of immunohistochemically stained tissue microarrays can permit rapid, standardized scoring of tumour markers from multiple studies. Tissue microarray sections prepared in nine studies containing 20 263 cores from 8267 breast cancers stained for two nuclear (oestrogen receptor, progesterone receptor), two membranous (human epidermal growth factor receptor 2 and epidermal growth factor receptor) and one cytoplasmic (cytokeratin 5/6) marker were scanned as digital images. Automated algorithms were used to score markers in tumour cells using the Ariol system. We compared automated scores against visual reads, and their associations with breast cancer survival. Approximately 65–70% of tissue microarray cores were satisfactory for scoring. Among satisfactory cores, agreement between dichotomous automated and visual scores was highest for oestrogen receptor (Kappa = 0.76), followed by human epidermal growth factor receptor 2 (Kappa = 0.69) and progesterone receptor (Kappa = 0.67). Automated quantitative scores for these markers were associated with hazard ratios for breast cancer mortality in a dose-response manner. Considering visual scores of epidermal growth factor receptor or cytokeratin 5/6 as the reference, automated scoring achieved excellent negative predictive value (96–98%), but yielded many false positives (positive predictive value = 30–32%). For all markers, we observed substantial heterogeneity in automated scoring performance across tissue microarrays. Automated analysis is a potentially useful tool for large-scale, quantitative scoring of immunohistochemically stained tissue microarrays available in consortia. However, continued optimization, rigorous marker-specific quality control measures and standardization of tissue microarray designs, staining and scoring protocols is needed to enhance results.Peer reviewe
    • …
    corecore