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SUMMARY
Patterns of genomic evolution between primary and metastatic breast cancer have not been studied in large
numbers, despite patients with metastatic breast cancer having dismal survival. We sequenced whole ge-
nomes or a panel of 365 genes on 299 samples from 170 patients with locally relapsed or metastatic breast
cancer. Several lines of analysis indicate that clones seeding metastasis or relapse disseminate late from pri-
mary tumors, but continue to acquire mutations, mostly accessing the same mutational processes active in
the primary tumor.Most distantmetastases acquired driver mutations not seen in the primary tumor, drawing
from a wider repertoire of cancer genes than early drivers. These include a number of clinically actionable
alterations and mutations inactivating SWI-SNF and JAK2-STAT3 pathways.
INTRODUCTION

Metastatic breast cancer is almost universally fatal within 5–10

years, a dismal statistic that has not changed much in the past

20–30 years (Tevaarwerk et al., 2013). Breast cancer recurrence
Significance

These findings have implications for personalized therapy of br
tasis or local relapse suggests that the primary tumor genome
first diagnosis, supporting the use of genome sequencing to aid
Biopsy and sequencing of metastases may be helpful in som
additional driver mutations not seen in the primary; these often
Sequencing local recurrences can distinguish a genuine relap
different care pathways.
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can take two forms: distant metastasis (commonly bone, brain,

liver, lung, and distant lymph nodes) and locoregional relapse

(recurrence in breast, chest wall, or regional lymph nodes). Lo-

coregional relapse occurs in about 10% of patients despite

optimal management of the primary tumor and is associated
east cancer. The late dissemination of cells that seedmetas-
can proxy for the genome of disseminated cells at the time of
decisions about adjuvant therapy for primary breast cancer.
e patients because most distant metastases have acquired
involve potentially actionable genes and cellular pathways.
se from a second primary cancer, two scenarios with very
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with concomitant or future distant metastatic disease in 30%

and 60% of cases, respectively. In contrast, regional lymph

node metastasis found at the time of primary diagnosis is often

cured with surgery and radiotherapy but is a well-established

poor prognostic factor, associated with a higher risk of subse-

quent cancer recurrence.

Molecular profiling of breast cancer has typically focused on

the primary breast lesion. Gene expression profiles classify

breast cancers into different subtypes, with clinical trials

showing that these transcriptional signatures can be used to

support therapeutic decisions in primary breast cancer (Harris

et al., 2016). Large-scale genomics analyses have now been per-

formed in thousands of primary breast cancers, revealing the

complex mutational landscape of the disease (Banerji et al.,

2012; Cancer Genome Atlas Network, 2012; Ciriello et al.,

2015; Ellis et al., 2012; Nik-Zainal et al., 2016; Shah

et al., 2012; Stephens et al., 2012). General patterns to emerge

from these studies include that estrogen receptor (ER)-positive

primary breast cancer has a characteristic ‘‘luminal’’ transcrip-

tional profile with frequent somatic mutations activating PI3K-

AKT signaling and inactivating GATA3 and the JUN kinase

pathway. Breast cancers with amplification and/or overexpres-

sion of ERBB2 (also known as HER2) have a distinct transcrip-

tional and genomic profile, confirming the central role that

ERBB2 plays in the pathogenesis of this subtype of breast can-

cer. Breast cancers negative for ER, the progesterone receptor

(PR), and HER2, so-called triple-negative breast cancers, are

characterized by a ‘‘basal-like’’ transcriptional profile, frequent

TP53 mutation, and extensive copy number variation. A number

of studies have revealed extensive genomic heterogeneity within

primary breast tumors and changes in subclonal structure during

systemic therapy (Balko et al., 2014; Gellert et al., 2016; Miller

et al., 2016; Ng et al., 2015; Shah et al., 2012; Wang et al.,

2014; Yates et al., 2015).

While the genome of primary breast cancer has been well

characterized, there has been considerably less analysis of

relapsed or metastatic breast cancer. Those studies that have

been performed have revealed that metastases are clonally

related to the primary tumor, sharing many of the driver muta-

tions, but nonetheless have typically acquired additional variants

not detectable in the primary lesion (Brastianos et al., 2015; De

Mattos-Arruda et al., 2014; Ding et al., 2010; Hoadley et al.,

2016; Juric et al., 2015; Savas et al., 2016; Shah et al., 2009;
170 Cancer Cell 32, 169–184, August 14, 2017
Yates et al., 2015). Due to small sample sizes, however, it has

proved difficult to extract general patterns of evolution between

primary and recurrence, leaving a number of unanswered ques-

tions with important biological and clinical implications. We con-

ducted this study to address some of these questions, including

how closely related a metastasis is to its primary lesion; whether

there are differences in evolution across locoregional relapse,

axillary metastases seeded by lymphatic spread, and distant

metastases seeded by hematogenous spread; whether the

driver landscape of metastases differs from primary cancers;

and whether there are cancer genes specific to metastases.

Since the survival of patients with metastatic breast cancer is

so poor, it is particularly important to establish whether newly

emerging driver mutations in the metastasis might offer opportu-

nities for personalized therapy.

RESULTS

Patient Cohort
The study comprises two major aims. In the first, to define pat-

terns of genomic evolution between the primary cancer and dis-

ease progression, we performed whole-genome sequencing of

40 tumor samples from 17 patients to an average coverage of

423, together with matched germline DNA samples (Tables S1

and S2). These 17 patients encompassed three clinical sce-

narios: synchronous axillary lymph node metastasis; distant

metastasis and local relapse subsequent to definitive treatment

for the primary tumor. In all but one case (PD11458), primary tu-

mor samples were treatment naive and sampled at diagnosis.

Metachronous recurrence sampleswere obtained 8–158months

after the primary tumor diagnosis. Distant metastatic samples

were obtained from tumor deposits in lung (n = 1), liver (n = 1),

distant skin regions (n = 2), contralateral breast (n = 1), and

distant lymph nodes (n = 2) (Figure 1). All patients underwent

standard management, including curative surgery with local

radiotherapy, adjuvant anthracycline-containing chemotherapy,

and/or endocrine therapies where appropriate (Table S1).

The second aim was to study the distribution of driver muta-

tions in distant metastatic or locoregionally relapsed breast can-

cer. To achieve this, we analyzed 227 recurrence samples from

163 patients for point mutations and copy number changes in

365 known cancer genes to an average coverage of 4673

(Tables S1 and S2). For 46 patients, 2–5 recurrence samples

mailto:per.eystein.lonning@helse-bergen.no
mailto:pc8@sanger.ac.uk
http://dx.doi.org/10.1016/j.ccell.2017.07.005


Figure 1. Phylogenetic Trees Describe Evolution of 17 Primary Breast Cancers to Metastasis or Local Relapse

Each tree represents an individual patient’s breast cancer inferred from the analysis of a matched normal sample and 2–4 tumor samples per case (total of 40

tumor samples). Trees are derived from genome-wide substitutions. Trees are grouped according to scenario: distant metastasis (red panel), locoregional relapse

(blue panel), or synchronous axillary lymph node metastasis (green panel). Branches private to the metastasis or relapse follow the same color theme, while

branches representing clones that are specific to the primary tumor are gray. The black trunk represents clonal mutations that are present in 100%of cells in every

sample. Purple branches represent mutationswithin themetastasis or relapse that are subclonal within the primary tumor. Branch lengths reflect the proportion of

clustered somatic mutations attributed to that subclone. The whole tree is scaled to the maximum length of a tree that would be inferred frommutations identified

in the primary tumor. Red circles identify the point of divergence between the metastasis/relapse-seeding clone and the primary tumor. The estimated whole-

genome doubling (WGD) time is indicated by 95% confidence intervals. Numbers in brackets reflect the months elapsed between primary tumor and metastasis

sample acquisition.

See also Figures S1 and S2 and Tables S1, S2, S3, S4, and S5.
were sequenced, allowing heterogeneity of the recurrence land-

scape to be explored. For 51 individuals, the matched primary

tumor was available for sequencing.

Samples were obtained in clinically relevant scenarios

including first relapse ormetastasis and following systemic treat-

ment interventions. All samples therefore represent clinically

progressing disease. Progression during a documented sys-

temic therapy exposure occurred for 126 samples, including

endocrine therapy (n = 43), anthracyclines (n = 45), taxanes

(n = 12), and other chemotherapeutic regimens. Samples were

obtained following a median of 2 systemic treatment exposures

(range, 0–5) and after 39 months (range, 0–196) from primary

cancer diagnosis (Table S1). Tumors were classified according

to the primary tumor TNM stage, histological type, grade, and

presence of estrogen receptor (ER), progesterone receptor

(PR), and ERBB2 (HER2) amplification.

Evolution between Primary Breast Cancer and
Metastasis/Relapse
Using whole-genome sequencing, we explored the patterns of

genomic evolution in three clinical scenarios across 17 patients:

local lymph node involvement at the time of primary tumor diag-

nosis (8 patients); locoregional relapse after apparently definitive

primary tumor treatment (n = 4); and subsequent development of
distant metastasis (n = 7) (Figure 1). We identified an average of

9,594 substitutions (range, 1,792–25,471), 1,098 indels (range,

60–12,786), and 245 structural variants (range, 6–786) within

each individual’s cancer genome (Table S3). We performed vali-

dation on 1,480 somatic substitutions and indels by custom cap-

ture pull-down or capillary sequencing (Table S4), confirming

1,436 (97%) were truly present and somatically acquired. We en-

riched our validation experiment withmutations that were private

to one of the samples to enhance our ability to identify subclonal

populations. Rearrangements were validated by the visual

confirmation of breakpoint-associated copy number changes.

To reconstruct the phylogenetic structure underlying disease

progression, we applied bioinformatic and deductive reasoning

approaches, as described previously (Nik-Zainal et al., 2012;

Yates et al., 2015) (Figures 1, S1, and S2A; Table S5). We used

multi-dimensional Bayesian Dirichlet processes to cluster so-

matic substitutions from multiple related samples according to

their respective mutation burden, corrected for tumor cellularity,

allele-specific copy number, and regions of differential chromo-

somal deletion between samples.We identified an average of 2.8

distinct clusters per patient (48 in 17 patients), with 94% of these

reproduced by independent clustering of high-coverage tar-

geted validation data (Figure S1 and Table S5). Individual clus-

ters inform on the structure of the phylogenetic tree, typically
Cancer Cell 32, 169–184, August 14, 2017 171
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enabling a single ‘‘tree solution’’ to be derived for each case. In

16 of the 17 cases, all samples studied were clonally related,

as demonstrated by thousands of shared somatic mutations,

with the trunk of the phylogenetic tree representing 12%–

98% of all clustered somatic substitutions (Figures 1 and 2A,

Table S5).

One critical observation emerges: the genomic landscape of

the primary breast cancer at diagnosis is a good surrogate for

the somatic mutations present in disseminated cells at that

moment in time. This conclusion derives from several aspects

of the data. First, the metastatic or relapsing clones branch

late from the phylogenetic lineage of the primary breast lesion,

with relatively few mutations private to the primary tumor. On

average, metastatic divergence occurs at 87% of molecular

timewithin the primary tumor, estimated from phylogenetic anal-

ysis of base substitutions in regions of the genomewith the same

copy number across all lesions (Figure 2A and Table S5). Sec-

ond, as expounded in more detail in the next section, the excess

mutational burden of metachronous metastasis or relapse

clones exceeded that of synchronous axillary lymph node me-

tastases (p = 0.02, F test) and the one synchronous distant

metastasis (PD11458) (Figure 2B). Indeed, synchronous lymph

node metastases are typically very similar to the primary breast

lesion (green branches, Figure 1). Third, driver mutations tend to

be concentrated on the trunk of the phylogenetic tree, notwith-

standing the 1 or 2 additional driver events acquired by relapse

or metastasis clones (explored in considerable detail in later

sections) (Figure 1). Furthermore, whole-genome duplication,

when present, precedes the branching of the recurrence clone

(Figures 1 and S2B). Finally, as we shall see, the mutational pro-

cesses active on the trunk of the phylogenetic tree tend to persist

in the metastasis, suggesting that inferences (and therapeutic

decisions) based on mutational signatures in the primary will

extend to the unseen disseminated cells.

One patient (PD8948), a germline BRCA1 mutation carrier,

was diagnosed with a triple-negative cancer of the left breast,

and over the next 10 years, treated for two apparent local re-

lapses of this lesion and a distant metastasis to the contralateral

breast. In fact, our genomic analyses revealed that the three le-

sions affecting the left breast were clonally unrelated, completely

independent primary cancers, with the second of them seeding
Figure 2. Genome-wide Somatic Mutation Timing in 16 Breast Cancer

(A) For each of 17 primary tumor samples, the bar height reflects the point in mo

primary tumor (relates to phylogenetic trees in Figure 1). Molecular time is determ

(B) The recurrence-specific mutation excess is reported in a barplot for each of

chronous (M) cases, where the box represents the interquartile range (IQR) bisect

data that do not exceed 1.53 the IQR while outlier data points extend beyond this

in branches private to the recurrenceminus those in branches private to the prima

tumor. The p value is generated by an F test.

(C) The recurrence-specific mutation excess as presented in (B) according to the

dot represents a patient. R = Pearson’s correlation coefficient.

(D) Scatterplots compare the proportion of each the major mutation types, inde

localized to the recurrence. Unlike (A) and (B), these figures include variants in re

(E) Radiation mutation signature at relapse following external beam radiation. The

circle in (D) is shown in detail. The overall contribution of indels and structural varia

sample, indels of greater lengths (bottom left barplot) and inversions and transl

Cohort-wide, the relative contribution of deletions as opposed to insertions (top ri

are reported.*p < 0.0001 (Fisher’s exact test) for enrichment in the relapse samp

symbol indicating that other samples do not seem to carry the same signature.

See also Figure S3.
the contralateral breast metastasis (Figure S3). This is important

clinically as the management and prognosis of a second primary

cancer and a local relapse are distinct. This case demonstrates

that genome sequencing can clarify the nature of presumed local

‘‘relapses,’’ especially important in individuals with a genetic pre-

disposition to breast cancer.

Taken together, then, these patterns of disease evolution

strongly support the use of genome sequencing of the primary

breast cancer lesion to underpin decisions about systemic ther-

apy in the adjuvant setting. In modern breast cancer treatment,

the major aim of chemotherapy or estrogen suppression is to

kill those cells that have already spread from the primary lesion,

since surgery and local radiotherapy are usually sufficient to cure

the primary. If it were the case that relapsing ormetastatic clones

disseminated early from the primary breast cancer with exten-

sive parallel evolution, as has been suggested previously (Klein,

2009), then targeting somatic mutations found in the primary

would not necessarily have much relevance to disseminated

cells without those changes.

Additional Burden of Mutations in Relapse Samples
For patients with synchronous axillary lymph node metastases,

the number of mutations private to the metastasis was broadly

equivalent to the number private to the primary cancer (Figures

1 and 2B). This is perhaps not surprising since, by virtue of being

synchronous lesions, the major lineages in the primary and the

metastasis had the same time period in which to accrue muta-

tions after divergence. In contrast, for the local relapse and

metachronous distant metastasis samples, the relapse carried,

on average, 63% more mutations than the primary tumor,

albeit with considerable variability among patients (range,

24%–244% extra). The number of additional mutations in the

relapse only loosely correlated with the time elapsed between

diagnosis of the primary cancer and relapse (Pearson’s correla-

tion R = 0.29) (Figure 2C).

The additional mutation burden in the later relapse sample was

substantially greater than the chronological time elapsed be-

tween primary and metastasis would suggest, implying that the

rate at which mutations accumulate has typically increased dur-

ing breast cancer evolution. Strikingly, we find that the fraction of

additional substitutions, indels, and structural variants in the
s

lecular time that the recurrence seeding clone is estimated to diverge from the

ined from the number of base substitutions.

18 recurrence samples and in a boxplot split by synchronous (S) and meta-

ed by the median, whiskers represent the maximum and minimum range of the

. The recurrence-specific mutation excess indicates the base substitution load

ry tumor, presented as a percentage of all substitutions identified in the primary

time from primary tumor diagnosis and acquisition of the relapse sample, each

ls (insertions and deletion), substitutions (Subs), and structural variants (SVs),

gions that were variable in copy number across samples.

mutation spectrum of an outlier sample (PD11461) highlighted by a dashed gray

nts (SVs) outweighs that of substitutions at relapse (top left barplot). Within this

ocations (bottom, middle bar plot) are relatively more common after relapse.

ght barplot) and of deletions of 5 base pairs (bp) or longer (bottom right barplot)

le. Cases exposed to prior external beam radiotherapy are indicated by a star
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relapse sample compared with the primary tumor are broadly in

concert with one another (Pearson’s correlation R = 0.7–0.8; Fig-

ure 2D). One consequence of the continued structural variation is

that deletions of genomic regions add to the diversity of point

mutations between subclones.

One patient (dotted circle, Figure 2D), however, had distinctly

more indels in the relapse sample than would be suggested for

the number of additional base substitutions. This sample was

from a local relapse, occurring 2 years after a small, node-nega-

tive primary cancer treated with wide local excision and adjuvant

radiotherapy. More than 90% of the indels at relapse were dele-

tions rather than insertions, compared with <50% of indels on

the trunk of the phylogenetic tree for that patient (odds ratio

[OR] = 11.5; p = 1 3 10�21; Fisher’s test) or 67% in all other pa-

tients’ cancers (OR = 3.4; p = 13 10�14; Fisher’s test; Figure 2E).

The deletions occurring at relapse were typically longer than

those in the primary tumor, with 33% being 5–100 bp in size

versus 14% in the primary (OR = 3.1, p = 0.03; Fisher’s test; Fig-

ure 2E). We recently described the signature of small to medium-

sized deletions as a characteristic feature of radiation-induced

secondary cancers (Behjati et al., 2016). This suggests that in

this patient, the relapsing clone was exposed to adjuvant radio-

therapy and survived, albeit with genomic damage from the

ionizing radiation. In contrast, in other relapse samples from pa-

tients treated with adjuvant radiotherapy, this signature was not

evident (Figure 2E), perhaps suggesting that the cells that ulti-

mately seeded these relapses had already disseminated outside

the radiation field.

To assess which mutational signatures are most significant at

different stages of disease evolution, we examined their relative

contributions to each branch of the phylogenetic tree (Figure 3).

Perhaps the most striking feature is that the heterogeneity in

mutational signatures across patients is considerably greater

than the heterogeneity across different evolutionary stages

within a given tumor. This suggests that a given breast tumor ac-

cesses only a subset of the mutational processes potentially

available to it, but those mutational processes contribute

genomic variation on an ongoing basis. Nonetheless, there are

some shifts in the relative contributions of mutational processes

over time. The universal signature of C > T transitions at CpG

dinucleotides (signature 1) contributes a relatively higher propor-

tion of mutations early in disease evolution, likely because

this signature is relatively constant throughout life and gets

swamped by processes emerging later in disease evolution.

Mutations attributed to the activity of APOBEC enzymes, char-

acterized by C > T and C > G variants in a TpC context (signa-

tures 2 and 13), were rather variable in their timing, being

predominantly early in some patients (such as PD11461), more

prominent in late stages in others (PD9195), and relatively steady

in many (PD4243) (Figure 3). These patients had a range of

systemic cytotoxic treatments following their primary cancer

diagnosis, including anthracyclines, cyclophosphamide, and

5-fluorouracil; the lack of new signatures in relapsing lesions

suggests that these chemotherapeutic agents are not major

drivers of mutation accumulation.

Telomere Integrity during Cancer Evolution
We estimated telomere lengths from whole-genome data for

germline and tumor samples. Telomere lengths showed variation
174 Cancer Cell 32, 169–184, August 14, 2017
among individuals and across samples from the same individual

(Figure S4 and Table S5). Greater variability of telomere lengths

was seen among tumors (mean = 7,703 bp; range, 2,409–

27,621 bp) compared with germline samples (mean =

6,627 bp, range, 4,351–11,077 bp) (Figure S4B). There was no

simple relationship between telomere length and the number of

somatic substitutions, indels, or structural variation within tumor

samples (Figure S4C).

In six of the eight cases where we sequenced breast tumors

and adjacent normal breast epithelium, the telomere was shorter

in the primary tumor, suggestive of telomere attrition during

cancer development. Between primary tumor and recurrence

samples within a patient, there was no consistent pattern, with

telomeres sometimes lengthening, sometimes shortening.

A few samples had especially long telomeres; one was associ-

ated with amplification of TERT (telomerase reverse transcrip-

tase) and another with amplification of TERC (telomerase RNA

template component).

Driver Mutations Are Acquired during Cancer
Progression
For each tumor, we manually curated the driver mutations

among the set of breast cancer genes known to be recurrently

targeted by point mutations (Kandoth et al., 2013; Lawrence

et al., 2014), structural variants, and copy number changes (Ber-

oukhim et al., 2010). We found that most driver mutations

occurred in the primary tumor and were located on the trunk of

the phylogenetic tree (Figure 1). Among the nine cancers that un-

derwent whole-genome duplication, all driver mutations arose

prior to this event, indicating that they are usually relatively early

events in cancer evolution.

Among the synchronous lymph node metastases, only one

patient had a driver mutation (in PTEN) seen in the metastasis

that was not present in the primary tumor, confirming that there

is generally little genomic divergence between primary and syn-

chronous local lymphatic metastases. In one case (PD11460),

we analyzed both a distant metastasis and a synchronous local

lymph node metastasis, finding that the lymph node deposit

was more closely related to the primary tumor than the subse-

quent distant metastasis and did not contain any private driver

mutations (Figure 1). This observation is consistent with the

highly divergent pattern recently reported between regional

lymph node metastases and brain metastases (Brastianos

et al., 2015).

Five of seven WGS-analysed patients with distant metasta-

ses, however, had one or two additional driver mutations

specific to the metastasis sample, suggesting that growth of

the metastatic clone in its new niche is abetted by further

genomic evolution. We observed several instances of com-

plex clusters of structural variants that were acquired late in

the major metastasis lineage. These included an event that

generated a complex amplification of CCND1 coupled with

loss of one copy of TP53 (Figure 4A) and a chromothripsis

(Stephens et al., 2011) event that resulted in FGFR1 amplifi-

cation (Figure 4B). Interestingly, these data showing complex,

catastrophic events during metastasis development echo

recent single-cell sequencing studies showing punctuated

copy number evolution in primary breast cancer lesions (Gao

et al., 2016).



Figure 3. Genome-wide Mutation Signatures in Ten Metastatic or Locally Relapsed Breast Cancers Annotated to Phylogenetic Trees

The mutational signature composition of each phylogenetic tree branch is reported for the ten multi-sample, whole-genome cases with a local relapse or distant

metastatic sample. HRD, homologous recombination deficiency; MMR, mismatch-repair deficiency. See also Figure S4.
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Figure 4. Structural Variant Driver Mutations at Relapse in Three Breast Cancers

(A) Case PD9193: De novo amplification of CCND1 in a distant lymph node metastasis. Structural variant breakpoints are represented by colored vertical lines:

interchromosomal translocations (gray arrows), tail-to-tail inversions (green), head-to-head inversions (blue), tandem duplications (orange), deletions (purple).

Rainfall plots report the inter-mutational distance of individual consecutive mutations where each dot reflects a mutation and the color represents the base

change.

(B) Case PD11460: de novo amplification of FGFR1 in a metastatic deposit.

(C) Case PD11461: a subclone containing a homozygous deletion in CDKN2A in the primary tumor seeds a local relapse.
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Of the three locoregional relapse cases, one relapse that

branched from the primary tumor particularly early in molecular

time acquired a new driver mutation in NCOR1. Another arose

from a subclone in the primary tumor that carried a homozygous

deletion ofCDKN2A; this event became fully clonal in the relapse

(Figure 4C).

Thus, these data show that distant metastasis and locore-

gional relapses are typically associated with acquisition of addi-

tional driver mutations compared with the primary tumor,

whereas driver mutations in synchronous lymph node metasta-

ses are typically also present in the primary.

The Driver Landscape of Relapse and Metastasis
To provide more complete statements about the landscape of

driver mutations at breast cancer recurrence, we performed

sequencing of all coding exons of 365 known cancer genes in

227 samples from distant metastases or locoregional relapses

across 163 patients. The primary tumor was available for 51 of

these patients and germline DNA for 81. For comparison, we

also interrogated these genes from sequenced exomes of 705

primary breast cancers published by the TCGA, which we rean-

alyzed using the same pipeline as for our cohort (Table S3).

Samples that were from local relapses or metastases

harbored a higher number of driver point mutations on average

than those in the primary tumor cohort (2.0 versus 1.6;

p = 0.0008; F test). In 25 (49%) of the 51 patients from whom

we analyzed the matched primary tumor, a driver mutation was

found that was private to the relapse sample. This wasmore pro-

nounced for distant metastases; a driver mutation not found in

the primary lesion was seen in 74% of distant metastases

compared with 29% of locoregional relapses (p = 0.002, Fisher’s

test).

We compared the rate of non-synonymous mutations with

synonymous mutations across the 365 genes. This technique,

well established for inferring selection in comparative genetics,

was adapted for somatic mutations (Martincorena et al., 2015),

taking account of the trinucleotide composition of the genes,

gene size, mutation spectrum, and local variation in mutation

rates across the genome. A total of 21 and 20 cancer genes

were identified as significantly mutated (false discovery rate,

q < 0.1) in the primary and relapse cohorts, respectively, of which

15 genes were significant in both cohorts (Figure 5A). We note

that BRCA1 and NF1 were not significant in the primary cancer

cohort after correction formultiple hypothesis testing, something

we believe to be due to the play of chance given the wealth of

data implicating these two genes in primary breast cancer.

When split by whether tumors were ER-positive or ER-negative,

we found that most breast cancer genes showed higher rates of

driver mutation in the relapse/metastasis samples than in pri-

mary tumors (Figure 5B). The exception to this was PIK3CA

and MAP3K1 in ER-positive tumors, in keeping with reported

better relapse-free survival rates in primary breast cancers car-

rying PIK3CA mutations.

We formally tested whether each gene was significantly more

frequently mutated in relapsed or metastatic breast cancer than

primary breast cancer (Figure 5C). In general, ORs were skewed

toward greater enrichment in relapse or metastatic samples,

reflecting the greater number of driver mutations and the

wider repertoire of genes mutated. Significant differences for
individual genes were not detected among locoregional relapses

compared with distant metastases.

Driver Mutations Acquired Late Encompass a Wider
Range of Cancer Genes
There are two possible explanations for the enrichment of driver

mutations in relapse/metastasis samples compared with the

cohort of primary breast cancers. It might be that those primary

breast cancers with amore disordered genome aremore likely to

subsequently relapse; or it might be that the relapsing clone con-

tinues to acquire new driver mutations after dissemination from

the primary lesion. We therefore compared the driver mutation

profile of the 51 patients in whom both the primary and a

relapse/metastasis sample were sequenced (Figures 6A–6C).

Mutations in well-known, relatively frequent breast cancer

genes, such as TP53, PIK3CA, and GATA3, when present,

were typically found in both the primary and the recurrence sam-

ples. In contrast, mutations in less frequent cancer genes were

often found only in the recurrence. This pattern was particularly

striking for genes involved in SWI/SNF signaling, such as

ARID1A, ARID1B, and ARID2, which were commonly wild-type

in the primary lesion but inactivated in the recurrence (Figures

6A, S5, and S6). This echoes recent data from metastatic endo-

metrial cancer (Gibson et al., 2016), locally progressive hepato-

cellular carcinoma (He et al., 2015), and a pan-cancermetastasis

study (Zehir et al., 2017), where mutations in these same genes

are also acquired late in disease evolution.

In primary breast cancer, ER-positive and triple-negative tu-

mors show rather distinct combinations of driver mutations,

with PIK3CA,GATA3, and MAPK-pathway mutations character-

izing the former and TP53 and copy number alterations the latter.

When studying relapse and metastasis samples, however, we

found that the genomic differences between triple-negative

and ER-positive cancers became more blurred: TP53mutations

were seen in 40%–50% of relapsed ER-positive cases; and

PIK3CA, GATA3, CDH1, and MAP3K1 all increased several-

fold in relapsed ER-negative cancers. We identified ER and

PgR expression loss in 17% and 41% of cases, respectively,

across the relapsed breast cancer cohort (Figure 6C). Loss of

ER expression at relapse was frequently associated with driver

mutations in TP53 (90% of cases) and ARID1A (30% of cases).

While TP53 mutations were usually early events, detected in

the primary tumor, ARID1Awasmore often private to the relapse

sample in association with hormone receptor loss (Figures 6A,

6C, and S5).

Late JAK-STAT Pathway Inactivation
Interestingly, JAK2 and STAT3 were identified as significantly

mutated in the metastasis/relapse screen even though they

had not been discovered in the earlier (and larger) exome studies

of primary breast cancers (Banerji et al., 2012; Cancer Genome

Atlas Network, 2012; Ellis et al., 2012; Shah et al., 2012; Ste-

phens et al., 2012). Both showed an excess of protein-truncating

mutations, such as nonsense base substitutions, frameshift in-

dels, and essential splice site mutations (Figure 7A), suggesting

that they are operating as tumor suppressor genes in breast can-

cer. All such mutations in this cohort arose in ER-positive can-

cers in contrast to JAK2 amplifications that have been identified

in triple-negative cancers (Balko et al., 2016). One patient
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showed an especially remarkable example of parallel evolution

of inactivating JAK2 mutations (Figure 7B). During this tumor’s

evolution, four different JAK2 inactivating mutations occurred,

all on subclonal branches of the phylogenetic tree, with several

of the lesions apparently having compound heterozygous inacti-

vation of the gene. This is reminiscent of the frequency of parallel

evolution of resistance to PARP inhibitors in ovarian cancers

through BRCA1/2 reversion mutations (Patch et al., 2015).

JAK2 andSTAT3mutations both showed a trend toward being

more frequent in distant metastasis samples (Figure 5C), which

may explain why these were detected as significant in our study

but not in previous studies of primary breast cancer. For

example, in one patient who had a local relapse followed by a

liver metastasis, the liver metastasis carried aSTAT3 inactivating

mutation that was absent from both the primary cancer and the

local relapse, despite the latter being closely related to the

metastasis (Figure 7C).

Thus, inactivation of JAK-STAT signaling appears to con-

tribute to disease progression and metastasis in some patients

with breast cancer. We note that in another study of metastatic

breast cancer, a JAK2 nonsense mutation was also discovered

(Zehir et al., 2017). Interestingly, homozygous loss of JAK2 has

recently been described as a mechanism of resistance to check-

point inhibitor immunotherapies (Zaretsky et al., 2016), probably

acting through blocking the interferon-gamma pathway.

Although none of the patients here received such therapies, it

is feasible that these mutations help advanced tumors evade

the native immune response mounted against them. Cancers

with JAK2 or STAT3 truncating mutations contained a higher

number of point mutations on average than other cancers

(p = 3 3 10�9; F test, Figure 7D). Although other explanations

are possible, this finding would be consistent with the notion

that these cancers may contain more neoantigens, stimulating

amore exuberant native immune response, and driving selection

of JAK-STAT pathway inactivation.

Treatment Exposures Influence Breast Cancer
Evolution
The broadening of the repertoire of cancer genes sampled by

late driver mutations likely reflects the diverse selective forces

operating during evolution of advanced breast cancer. These

include selective pressures exerted by therapeutic interventions,

by the immune system responding to the expansion of a clone

carrying many neoantigens, and by the very different microenvi-

ronment in a metastatic site compared with breast epithelium.

A total of 139 samples of recurrent disease were taken shortly

before a systemic treatment was commenced (Figure S6A), of

which 59 displayed progressive disease, indicating treatment

resistance, and 80 cancers stabilized or responded to treatment

(Table S1). Across all treatments, TP53 and ESR1 driver muta-
Figure 5. Comparison of the Driver Landscapes of 163 Recurrent and

(A) Cancer genes identified as significantly mutated with a false discovery rate

recurrent breast cancers independently.

(B) Barplots compare the prevalence of each significantly mutated cancer gene an

respectively, where the estrogen receptor status of the primary tumor was docu

(C) Forest plot comparing the frequency with which cancer genes are mutated in

(705 cases). Enrichment for each gene was determined using two-sided Fisher’s

number of cases and whiskers, and numbers inside brackets represent the 95%
tions were more frequent in cases that progressed (63% in

progression cases versus 45% in stable disease, p = 0.04; and

7% versus 0%, p = 0.03 respectively; Fisher’s exact test), as

seen in a recently published series of metastatic breast cancers

(Zehir et al., 2017). Mutant TP53 has previously been associated

with endocrine and anthracycline resistance (Aas et al., 1996;

Berns et al., 1998). Gain-of-function mutations in TP53 have

been associated with metastasis and drug resistance in cell-

line and xenograft models (Petitjean et al., 2007; Turner et al.,

2017), but in our cohort loss-of-function and gain-of-function

mutations were equally enriched in patients with progressive dis-

ease compared with stable disease (p = 0.5; Fisher’s exact test)

(Figure S6B), and in recurrences compared with primary tumors

(p = 0.7; Fisher’s exact test) (Figure S6C). As previously reported,

ESR1 resistancemutations were found in five patients previously

treated with endocrine therapies (Chandarlapaty et al., 2016;

Robinson et al., 2013; Toy et al., 2013) and predicted progressive

disease upon switching treatment (Figure S5).

Truncating mutations in SWI-SNF cancer genes, including

ARID1A and ARID2, emerged in three of five cancers relapsing

after taxane chemotherapy (Figure S6D). Interestingly, an asso-

ciation between loss of ARID1A expression and chemoresist-

ance has also been observed in clear-cell ovarian cancers

(Katagiri et al., 2012).

A handful of potentially actionable driver mutations emerged

during endocrine therapy (Figures S5 and S6D). These included

amplifications of the MDM4, FGFR1, and CCND1 oncogenes

in two patients each, with an additional patient acquiring a ca-

nonical BRAF V600E mutation. FGFR1 activation and TP53

pathway inactivation (including MDM2/4 activation) have previ-

ously been associated with endocrine resistance (Ellis et al.,

2012; Turner et al., 2010). The implication here is that oncogene

amplification or activation may represent a common mode of

breast cancer evolution in the face of endocrine therapy. Since

oncogenes are more natural therapeutic targets than tumor sup-

pressor genes, this raises the interesting possibility of new

personalized interventions for some patients relapsing after

endocrine therapy.

DISCUSSION

The concept of precision oncology is founded on the presump-

tion that knowing the genomic basis of a patient’s cancer will

guide choice of targeted therapies likely to be efficacious. This

rests on the key assumption that we can obtain a sample repre-

sentative of the tumor cells that we are targeting with that ther-

apy. In patients diagnosed with primary breast cancer, systemic

therapy is aimed at killing the microscopic deposits of cells that

have disseminated from the breast, as surgery and radiotherapy

will generally cure the primary lesion. In the samples studied
705 Primary Breast Cancers

(q) < 0.1, applied to the TCGA 705 primary breast cancer exomes or the 163

d ESR1 in the primary and recurrent breast cancer cohorts (662 and 151 cases,

mented).

the relapse cancer cohort (163 cases) compared with the primary tumor cohort

exact tests and Benjamini and Hochberg correction. Box size is scaled to the

confidence interval for the odds ratio (the upper limit is clipped at 1,000).
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Figure 6. Temporal Distribution of Mutated Cancer Genes in 51 Paired Primary Tumor and Relapse Samples

(A) The heatmap indicates if the driver mutation is early (blue), defined as present in both the primary tumor and recurrence, or late, being detected in the

recurrence deposit(s) only (orange), or different mutations in the same gene seen in both the primary and recurrence (purple). Asterisks (*) indicate cancer genes

mutated in >5% of 705 primary tumor samples. The pie charts compare the proportion of mutations that are private to recurrence samples within most commonly

mutated genes andwithin comparatively rare cancer genes (mutated in <5%of primary tumors). Stacked barplot above the heatmap relates cumulative incidence

of point mutations and amplifications in (C) for each individual patient.

(B) Temporal ordering of amplified oncogenes derived from analysis of next-generation sequencing data. Tile colors follow the format stated in (A).

(C) Blue and pink tiles indicate the immunohistochemical (IHC) classification by estrogen receptor (ER) and progesterone receptor (PgR) of primary and relapse

samples, where a split tile indicates multiple relapse samples with different ER/PgR statuses.

See also Figures S5 and S6.
here, we found that at the time of initial diagnosis, the genome of

the primary would have been a good proxy for that of the cells

that ultimately seeded the relapse, whether the spread be local

or via a hematogenous or lymphatic route. In particular, the

vast majority of driver mutations found in the primary cancer
180 Cancer Cell 32, 169–184, August 14, 2017
would also be present in the relapsing clone. Our observation

of late dissemination is consistent with the findings of a recent

study that combined bulk sequencing of primary tumors with sin-

gle-cell sequencing of bone marrow-derived disseminated tu-

mor cells, the presumed precursor of clinically overt metastatic
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disease (Demeulemeester et al., 2016). Although the genome of

a metastatic clone may be similar to the primary tumor at first

diagnosis, by the time it has expanded to be clinically detectable,

extensive further genomic changes have occurred.

Whether patients presenting with distant metastatic disease

should have that metastasis biopsied or not to decide on thera-

peutic interventions is a controversial question (Arnedos et al.,

2015). Many sites of metastatic disease are challenging and

invasive to sample, demonstrated by the bias seen in our cohort

toward sites of disease that are easy to access. Our data indicate

that metastases seeded by hematogenous spread do continue

to evolve after dissemination, acquiring many new somatic mu-

tations and key driver mutations. A recent study from a large ter-

tiary referral unit has shown that many patients with metastatic

breast cancer are willing to undergo biopsy of recurrent lesions

for molecular profiling (Zehir et al., 2017).

In its restless search for a genome ideally suited to autono-

mous life in far-flung regions of the body, a breast cancer can ac-

cess many different mutational processes and a wide repertoire

of cancer genes. The result is considerable patient-to-patient

variability in genomic profiles, even more pronounced than the

already daunting levels seen in primary breast cancer. Mapping

this complexity will require recruitment of large, prospective co-

horts of patients with metastatic disease and integration with

transcriptional, epigenomic, and clinical readouts. Our data

show that such an endeavor would have potential clinical

impact, providing insights into patterns of clonal evolution,

mechanisms of therapy failure, and pathways that could repre-

sent new therapeutic targets.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Targeted and whole genome

sequence data

https://www.ebi.ac.uk/ega/ Accession numbers: Targeted (2939stdy)

EGAD00001002698

Exome (492stdy): EGAD00001002697

Whole genome (2040stdy): EGAD00001002696

Somatic Mutation Calls Mendeley Data http://dx.doi.org/10.17632/g7kpzkhz8c.1

Software and Algorithms

The Sanger’s Cancer Genome Project core

somatic calling workflow from

the ICGC PanCancer Analysis of Whole

Genomes (PCAWG) project

https://dockstore.org/containers/quay.io/

pancancer/pcawg-sanger-cgp-workflow
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Peter J

Campbell (pc8@sanger.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subjects, Samples and Consent
All samples included in this project were obtained with informed patient consent and handled in line with the wider framework and

approval for the Breast Cancer Genome Analyses for the International Cancer Genome Consortium Working Group led by the Well-

come Trust Sanger Institute, Cambridgeshire, UK, REC reference: 09/H0306/36. We performed MPS and analysis of a total of 299

tumor samples collected from 170 individual’s breast cancers and 87 matched normal, germline samples (Table S1). Three patients

were male and the remainder female, the average age at primary tumor diagnosis was 53 years (range 30-85 years). Clinical details

including tumor stage, histological features and hormone receptor status are summarized in Table S1. Clinical follow-up data was

available for 96% of patients. The cohort reflects a very poor prognostic group of patients whereby 96% of these patients were diag-

nosed during their disease course witheither distant metastatic disease (86%), very poorly controlled locoregional disease not

amenable to surgical resection (10% of cases) or both (7%).

Whole Genome ‘Triplet’ Cohort
To permit phylogenetic analysis of the progression from primary tumor to metastasis a total of 39 fresh frozen tumor samples were

collected from 17 females and subjected to whole genome sequencing. Samples were obtained from Dana-Farber Cancer Institute,

Boston, US (7 cases); Kings College Hospital, London, UK (4 cases); The Erasmus MC Cancer Center, Rotterdam, The Netherlands

(4 cases); The Institute Jules Bordet, Brussels, Belgium (2 cases) in line with local ethics committee approvals (project SHARE’’ #93-

085, approved by the Dana-Farber Harvard Cancer Center institutional review board; UK, REC reference: 10/H0804/33, approved by

Guy’s and St Thomas’ NHS Trust ethics committee; MEC 02.953, approved by the medical ethical committee of the Academisch

Ziekenhuis Rotterdam (EUR/ AZR) for ‘The retrospective assessment of cell biological factors in archival tumor tissues’; Protocol

1698 and 1634, approved by the Institut Jules Bordet local ethics committee). For each individual, in addition to a primary tumor

and a matched normal sample at least one sample from a distinct metastatic scenario was included in the experiment. For 7 individ-

uals, where the metastasis scenario sample was limited to a synchronous lymph node deposit these samples were only included in

the whole genome analysis where they form a comparison cohort. For one patient (PD8948) where the apparent relapse samples

were identified as distinct primary tumors we collected two additional tumor samples from formalin fixed paraffin embedded

(FFPE) tissue blocks and performed targeted capture on both samples and whole genome sequencing on one (Figure S3).

Relapsed Breast Cancer Cohort
The number of cases of locally relapsed and distant metastatic breast cancer was extended from 10 to 163 by including a second

cohort of patients for whom 365 cancer related genes were sequenced using a targeted capture pulldown approach. Samples from

these individuals form the ‘relapsed breast cancer cohort’. The additional 153 patients were drawn from a single centre study at the

Department of Oncology, Haukeland University Hospital, performed with the aim of identifying genetic alterations in advanced and
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metastatic breast cancer deposits. BetweenMarch 1996 and October 2004, a total of 206 patients with non-operable primary breast

cancers, local relapse and / or metastatic deposits suitable for biopsy were recruited to the study. All samples were snap-frozen in

liquid nitrogen in the operating room immediately upon removal from the patient. We analysed a total of 259 tumor samples from 153

patients. Patients included in the analysis had at least one sample from a distant metastatic or locoregional relapse deposit that con-

tained sufficient material for DNA extraction, allowing MPS. For 41 patients included in the study we were able to identify a primary

tumor sample and extract sufficient DNA for MPS (FFPE, n = 29; fresh frozen, n = 12). In addition, DNA was retrieved from FFPE-

blocks from fourmetastatic deposits undergoing routine biopsy in the time period between primary and fresh frozenmetastatic tissue

collection, 2 primary tumors after neo-adjuvant chemotherapy and a synchronous lymph node deposit. The study was approved by

the regional ethics committee of the Norwegian Health Region West (218/97 – 77.97; REK Vest), and all patients provided written

informed consent.

In total, 163 individuals were therefore included within the relapsed breast cancer cohort and for each patient at least one sample

(total number of relapse samples = 227) was obtained from a distant metastatic deposit (n = 79) or a metachronous loco-regional

relapse (n = 148) (Table S1). Multiple relapse samples were collected for 46 individuals (range 2-5 samples per individual). A matched

primary tumor sample was collected in 51 cases and amatched germline sample was collected for 80 cases (adjacent normal breast

tissue, n = 6; blood, n = 74). The distribution of relapse sample sites is presented in Table S1. Most (177/227) relapse and metastasis

samples were pre-treated, being exposed to an average of 1.7 (range 0-5) lines of systemic therapy Table S1. A total of 80 samples

from 57 individuals were also obtained after exposure to external beam radiotherapy.

Primary Breast Cancer (Comparison) Cohort
The primary tumor comparison cohort consisted of previously published exome data from 705 individual’s primary breast cancers,

freely available from The Cancer Genome Atlas (TCGA). We included properly matched samples that were available for download

from CGHub on December 2015. We excluded variants where the matched normal coverage was lower than 10-fold and samples

for which less than 50% of the mutations detected by our calling pipeline were present in the somatic mutation calls released by

TCGA. To minimize bias in our comparisons we applied the same mutation calling algorithms, post-processing filters and driver

annotation processes aswere used for in in-house generated data for the relapse cohort. Annotatedmutation data for these samples,

within the scope of the cancer gene panel is available in Table S3. Clinical information for the 705 patients in the primary cohort was

downloaded from https://tcga-data.nci.nih.gov/docs/publications/brca_2012/ (file = BRCA_Clinical.tar.gz ). A comparison of the

clinical characteristics of the primary cohort and relapse cohort at the point of diagnosis is provided in Table S1. Cancer staging in-

formation for each dataset was determined using the American Joint Committee onCancer (AJCC) StagingManual, 7th edition.When

nodal status was recorded as ‘Nx’ within clinical information this is assumed to reflect node negative disease (‘N0’).

METHOD DETAILS

Sample Size
The sample size of 163 recurrent breast cancers has 99% power that a cancer gene mutated in 5% of breast cancer recurrences

would be seen in at least 3 patients in the cohort.

Tumor Specimen Processing
All samples within the whole genome and relapse breast cancer cohorts were histopathologically assessed to ensure adequate tu-

mor cellularity (>=70%) and if necessary macrodissection was performed. Where possible for both primary tumor and relapse

samples ER and PgR expression was determined by local pathologists as Allred scores of 4 or above. Where available, HER2

over-expression was determined by IHC scores of 3+ or 2+ confirmed by fluorescent in-situ hybridisation. Due to the historical nature

of the Haukeland University Hospital sample set, HER2 expression data however, is scarce and HER2 amplification was determined

from sequence data using the criteria for identifying amplifications in targeted capture data as described below. We have previously

shown our approach to yield results that are highly consistent with clinical HER2 status results (Yates et al., 2015).

DNA Extraction
DNA from fresh frozen tumor tissue specimens and blood samples was isolated, using spin columns from the QIAamp DNA mini kit

(Qiagen). The procedurewas performed according to themanufacturer’s instructionswith the exception that 400ul sample (instead of

200ul) was used as input in the cases where full blood on EDTA were used instead of leukocyte concentrates (Haukeland University

Hospital cases). DNA from formalin fixed paraffin embedded tissue (FFPE) was isolated, using spin columns from the QIAamp DNA

FFPE Tissue Kit (Qiagen). The procedure was performed according to the manufacturer’s instructions, with the following exceptions:

The de-paraffinization step with xylene was repeated three times and the subsequent washing step with ethanol was repeated twice.

Lysis of tissue was performed using 540 ml buffer ATL and 60 ml proteinase K per samples, for 2-4 hours at 56�C, before addition of a

further 180 ml buffer ATL and 20 ml proteinase K and an over-night incubation at 56�C.

Multi-Sample Whole Genome Sequencing
Genomic libraries with insert sizes of 300bp-600bp were derived from native DNA from 39 tumor and 17matched normal fresh frozen

samples using Illumina� paired end sample preparation kits according to manufacturers instructions. Following cluster generation,
e2 Cancer Cell 32, 169–184.e1–e7, August 14, 2017

https://tcga-data.nci.nih.gov/docs/publications/brca_2012/
http://tcga-data.nci.nih.gov/docs/publications/brca_2012/BRCA_Clinical.tar.gz


100bp paired-end sequence data was generated using Illumina HiSeqs and was subsequently aligned to the reference human

genome (NCBI build37) using BWA. Whole genome libraries from a single FFPE tumor (PD8948c) and matched fresh frozen normal

sample (PD8948b) were prepared using Agilent Technologies Sure Select library preparation kit (Custom library kit (cat no. 930075)

http://www.agilent.com/search/?Ntt=930075 following manufacturers instructions. 150bp paired end sequence data (with average

insert sizes of 319bp and 481bp respectively) was generated using Illumina X10. The average genome wide sequence coverage of

tumors and matched normal samples was 42 and 31 fold respectively (Table S2).

Multi-Region Targeted Gene Screen
For targeted capture pulldown experiments we used a bait design that consisted of over 8,000 targets of which almost 6,000 covered

the exons of 365 genes. To facilitate copy number analyses baits were also included to target over 2,000 SNPs outside of exonic

locations. Genomic DNA from tumor and matched normal samples, was fragmented using Covaris� (average insert size �150bp)

and subjected to Illumina� DNA sequencing library preparation using Agilent’s� Bravo Automated liquid handling platform. Tumor

and normal samples were indexedwith unique barcodes using PCR. Libraries were then hybridised to custom ribonucleic (RNA) baits

according to the Agilent� SureSelect� protocol. Samples were multiplexed on average 16 samples per lane and flow-cell clusters

created. Paired-end, 75bp sequence readswere generated using Illumina HiSeq 2000�. Sequence data was re-aligned to the human

genome (NCBI build 37) using BWA. Unmapped reads, PCR duplicates and those outside of the target region were excluded from

analysis. The average sequence coverage of tumors and matched normal samples was 467 and 505 fold respectively (Table S2).

Multi-Sample Mutation Calling
Substitutions, indels and structural variant breakpoints were called independently in each tumor sample using mutation calling algo-

rithms (CaVEMan, Pindel and BRASS) and post-processing filters as previously described (Yates et al., 2015). Mutation calling algo-

rithms used in the analysis are freely available at https://github.com/cancerit/. Where an individual had more than one tumor sample

we performed a comparative analysis of SNP and indel variant data for union of sites from all related samples in an unbiased manner

using in-house software – vafCorrect, that is freely available at https://github.com/cancerit/vafCorrect. For substitutions unbiased

pileup results were obtained using Bio::DB::HTS (https://github.com/Ensembl/Bio-DB-HTS). For indels the approach includes un-

mapped reads whose pair is mappedwithin the vicinity (defined by library insert size) of the indel site and resulting reads were aligned

using exonerate to original reference sequence and alternate reference sequence (created by inserting the indel variant at the given

reference location). Exonerate output was then parsed to count the fraction of reads aligned to original reference and alternate refer-

ence sequence. Reads that were mapped with equal identity scores to reference and alternate sequence were reported as

ambiguous reads while reads that were present at the variant location but did not map to either of the reference sequences were

categorized as unknown reads. Data quality was ensured and the impact of germline SNP contamination minimized by filtering

against an extended unmatched normal panel of over 200 samples, cross-referencing with available germline SNP databases, using

a matched normal sample where available and visually inspecting local alignments for all reported coding mutations.

Comprehensive lists of all somatic substitutions, indels and structural variants fromwhole genome analysis are available for down-

load at review@sftpsrv.sanger.ac.uk. All high confidence mutation calls within the scope of the cancer gene panel are presented in

Table S3.

Mutation Validation
For the whole genome experiment, native DNA where available (25 tumor and 14 normal samples) or whole genome amplified (WGA)

DNA when necessary (samples PD13596a, PD13596b, PD13596c, PD4243a, PD4252c, PD48102a, PD8948d, PD8948e) was sub-

jected to custom capture pulldown and high depth re-sequencing to a target depth of 1000-fold. Probes were designed for 6,534

genome-wide substitutions and indels using Agilent Technologies SureSelect Standard DNA DesignWizard. High-stringency repeat

masking, a tiling density of 2X and balanced boosting were applied to the design. DNA capture (paired-end, average insert size

150bp) libraries were multiplexed and sequenced using Illumina MiSeq� to an average coverage of 1,076-fold. We have previously

published validation data for case PD9771 (Yates et al., 2015). To determine an experimental validation rate, all coding indels (n=144)

and substitutions (n=1,498) were included in the experiment. A true positive validation of 94% was identified for both coding indels

and substitutions independently. Amongst substitutions the most common reason for failure to validate was low coverage (4%) and

this was usually associated with the use of WGA material. Excluding WGA validation experiments was associated with a validation

rate of 97% and this is believed to be a more reliable reflection of the true positive rate (Table S4).

The remaining variants included in the high-depth pulldown design were selected to enable validation and refinement of phyloge-

netic tree structures. The approach was biased towards subclonal events and mutations that contradicted the consensus tree.

Mutations close to each other or within 200bp of germline snps were also enriched to permit reconstruction of the subclonal structure

through phasing approaches. Using this approach, across 13 cases (cases PD13596, PD4252, PD4820, PD114780 excluded for rea-

sons stated above), 45 out of 48 tree branches were identified through an independent clustering experiment, re-capitulating and

therefore validating the basic tree structure in each case. A total of 3 small branches failed to validate and consisted of 2-3% of

the overall mutation burden in each case. See Figure S1 and Table S5 for details of phylogenetic tree construction and validation

in each case.

Regarding multi-sample targeted capture experiments we have previously demonstrated a 99% consistency rate in reporting

mutation presence and absence (Yates et al., 2015) using custom pull down duplicate experiments. Furthermore, we validated
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non-synonymous mutations in ESR1, JAK2 and PIK3R1 using capillary sequencing (Table S4). One ESR1mutation was validated in

an independent exome experiment (Brown, 2017).

Cancer Gene Discovery
To identify recurrently mutated driver genes we used dNdScv, as previously described in detail (Nik-Zainal et al., 2016). This method

uses dN/dS and covariates to detect genes with higher density of non-synonymous coding mutations than expected by chance. The

method considers the trinucleotide mutation spectrum, the sequence of each gene, the impact of coding mutations (synonymous,

missense, nonsense, splice sites substitutions and indels) and the variation of themutation rate across genes.Multiple testing correc-

tion (Benjamini-Hochberg FDR) was applied across analyzed genes and a q value < 0.1was used to determine statistical significance.

For the relapse cohort significance was tested across the 311 genes for which at least one mutation was called. The approach was

performed across all relapse samples and across the subset of samples with a matched germline sample. STAT3 was significantly

mutated in the matched sample analysis only. Within the exome analysis over 20,000 genes are analyzed.

Driver Mutation Annotation
Each coding variant wasmanually curatedwith a likely driver status following a systematic approach. Firstly, likely cancer geneswere

identified as either those found within the dNdS cancer gene discovery approach described above, from published reference mate-

rials consisting of the Cancer Gene Census (Futreal et al., 2004), the Cancer5000 series (Lawrence et al., 2014) or from literature re-

view of breast cancer sequencing studies (Banerji et al., 2012; Cancer Genome Atlas Network, 2012; Ellis et al., 2012; Shah et al.,

2012; Stephens et al., 2012). Subsequently, oncogenic mutations were annotated within these cancer genes. Oncogenic mutations

were defined as those falling into one of the following categories: 1) A canonical oncogenic mutation in a recurrent mutation hotspot;

2) A lower frequency recurrent mutation in a known oncogene with 3 or more confirmed somatic non-synonymous substitutions or in-

frame deletions previously reported at this locus in COSMIC or confirmed through experimental models or special cohorts (i.e. ESR1

resistance mutations); 3) Likely damaging events in a known tumour suppressor that include truncating (nonsense), frame-shift,

essential splice variants or those within a mutation hotspot (>=2 somatic mutations); 4) Silent mutations in a known recurrent splice

site hotspot.

Genome-Wide Subclonal Copy Number Analyses
Segmental copy number information was derived from all targeted capture and whole genome data using the Allele Specific Copy

Number Analysis of Tumors (ASCAT) algorithm (Van Loo et al., 2010). The Battenberg algorithm was used to identify clonal and sub-

clonal copy number changes in whole genome sequence data as previously described (Nik-Zainal et al., 2012; Yates et al., 2015) and

was also used to challenge and confirm copy number and ploidy estimates derived from ASCAT. The approach phases germline

SNPs within MPS data using Impute2 (Howie et al., 2009) that uses a well characterized panel of polymorphic SNPs.

Within whole genome data, copy number segments are reported as amplified when present at more than twice the estimated

average ploidy across the whole genome. Homozygous deletions are identified as segments where total copy number equals

zero or equivalent in an area of subclonal copy number. Within targeted capture data the mean logR and 95% confidence interval

was calculated across known cancer driver genes. Potential amplifications in common breast cancer genes were identified based

on amean logR of > 1, equating to 6 alleles in a diploid genome and tumor cellularity of 50%. For related samples where heterogeneity

of amplification events was called logR and BAFs across all genes and point mutation data were reviewed manually in each related

sample to determine if heterogeneity is likely a consequence of low aberrant cell fraction as opposed to true driver heterogeneity. This

conservative approach was adopted to minimize the risk of over-calling heterogeneity.

Genome-Wide Multi-Sample Clonality Analyses
For the 17 patients with multi-sample whole genome sequencing data, to model the subclonal structure across multiple related sam-

ples previously described bioinformatics and deductive reasoning approaches were adopted. The approach follows 3 main steps

including the identification of large-scale subclonal copy number changes using the Battenberg algorithm (Nik-Zainal et al., 2012),

clustering of subclonal somatic substitutions using a Bayesian Dirichlet process in multiple dimensions across related samples

and hierarchical ordering across multiple samples using the ‘pigeon hole principle’. Strict quality control is applied to the mutations

included in clustering analysis to avoid the generation of false positive clusters of mutations:

d During evolution, copy number losses may result in the loss of mutations in the affected regions, resulting in clusters of muta-

tions found uniquely in the unaffected sample(s). In order to avoid falsely calling such mutations as arising from a clonal expan-

sion in the unaffected samples, such mutations are excluded from Dirichlet process clustering.

d Some mutations may be present in multiple samples, but only called in a subset of samples, due to low allele frequency in the

other sample(s). To avoid false negatives, allele frequencies of all mutations found in any sample from a patient are therefore re-

called, with a minimum mapping quality and base quality of 10.

d The allele frequencies of all mutations are adjusted to cancer cell fraction using purity and copy number information. Copy num-

ber segments have start and end points defined by heterozygous SNP locations, so somatic variants that fall between these

boundaries have undefined copy number and are excluded from clustering.
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Amedian of 95% (range 77 – 99%) of mutations are included in clustering. Using this approach each substitution that passed qual-

ity control was assigned to a specific cluster (Tables S5). For each individual case, data including cluster size (equating to phyloge-

netic tree branch length), cluster ‘position’ (reflecting the proportion of cells containing the mutation cluster in each related sample)

and posterior confidence intervals are presented for both discovery and validation experiments in Table S5 and Figure S1.

Mutation Timing in Multi-Sample Analyses
The relative contribution of the different mutation types during evolution (Figure 2) was estimated by comparing the proportion of

mutations that were shared, private to the primary tumor sample or private to the metastasis/ relapse sample. Each individual point

mutation was assigned to one of these categories by calculating for each mutation, in all related samples independently, R’s pbino-

mial statistic based upon a conservative, expected error rate of 1 in 200. A mutation was deemed to be present or absent from an

individual sample based upon a p value of <=0.05 or > 0.05 respectively. All structural variants reconstructed in silico were deter-

mined to be shared or private to the primary/ metastasis samples based upon either reconstruction in related samples or the pres-

ence of 4 or more split reads supporting the breakpoint using BRASS1. Substitution branch timing (Figures 1 and 2) was calculated

using mutation clustering where the cluster size dictates the branch length.

Whole Genome Duplication Timing Analysis
In this study we have estimated the prevalence of 3 different developmental stages for 22 of the breast cancer samples. The first one

corresponds to the diploid stage previous to whole genome duplication. The second one is the tetraploid cell stage after the whole

genome duplication was acquired and previous to the subclonal diversification. Lastly, the timing between the last selective sweep

and the emergence of the detected subclones. The duration of each of the stages in molecular time is estimated via the fraction of

mutations having arisen in each of the phases. To estimate the proportions of mutations in each stage we employ a strategy similar to

that of Purdom et al. (Purdom et al., 2013) and extend it to subclonal mutations.

Let r denote the purity of the sample. The expected variant allele frequency fi for amutation arising in state I depends on the number

mutated alleles mi, the total copy number c (4 in our case) and the prevalence of the subclone pi. For early clonal mutations we have

pi = 1 and mi = 2, for late clonal mutations we have mi = 1. For subclonal mutations we have pi < 1 and mi = 1.

f =
rmipi

4r+ 2ð1� rÞ
We model the number of reads X arising from a mutation in stage I as a binomial with coverage n.

Xj i � Binom ðn; fiÞ
The probability that a mutation occurs in stage I is pi. This gives rise to a binomial mixture model.

PðX; iÞ=PðX j iÞ3pi

Using Bayes’ formula we can compute the probability of being in state I given X as

Pði jXÞ=PðX; iÞ
PðXÞ =

PðX j iÞ3piP
iPðX j iÞ3pi

For a series of k observed mutations with variant reads x1, . xk, we can estimate the mixture proportions pi using and EM

algorithm.

Knowing the probabilities pi, for early (pe) and late (pl) stages we can calculate an estimate the relative time of WGD as:

t =
2 pe

2 pe +pl

To assess the robustness of the above estimator and to calculate confidence intervals we use bootstrapping, subsampling 100

times from the number of observed mutations with replacement and calculating t for each of the subsamples.

Presented analyses were first applied to all mutations within individual samples with results being consistent with duplication

arising prior to primary-relapse divergence. A more accurate estimate of the timing of whole genome duplication was then deter-

mined by restricting the analysis to shared, clonal mutations allocated to the trunk of the phylogenetic tree.

Driver Mutation Enrichment Analyses
The frequency with which each cancer gene (ESR1 or genes significantly mutated in the driver discovery experiment) was altered by a

driver mutation was compared between the relapsed and primary breast cancer cohorts using a two-sided Fishers’s exact test. A

Benjamini-Hochberg correction for multiple testing was applied to generate false discovery rates (q). A total of 7 genes were signif-

icantly enriched in the relapsed compared to the primary cohort (defined by q < 0.1) while no genes were enriched in the primary

cohort.
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Mutational Signature Analysis
We assessed the relative activity of mutational processes over time by allocating somatic mutations to their specific branch of the

phylogenetic tree and subjecting individual branches (composed of more than 20 mutations) to mutational signature analysis (Fig-

ure 3). Mutational signatures were detected in two independent ways: (i) de novo extraction based on somatic substitutions and their

immediate sequence context and (ii) refitting of previously identified consensus signatures of mutational processes. The de novo

extraction was performed using a previously developed theoretical model and its corresponding computational framework (Alexan-

drov et al., 2013b). Briefly, the algorithm deciphers the minimal set of mutational signatures that optimally explains the proportion of

each mutation type in each mutational catalogue and then estimates the contribution of each signature to each sample. Within this

dataset the computational framework identified five reproducible mutational signatures that closely resembled previously identified

breast cancer signatures.

In the second stage, 27 distinct consensus mutational signatures previously identified from examining 7,042 samples across 30

different cancer types were ‘refitted’ (Alexandrov et al., 2013a). All possible combinations of up to seven mutational signatures

were evaluated for each sample. This resulted in 1,285,623 solutions per sample and a model selection was applied to select the

optimal solution. The model selection framework excludes any solution in which a mutational signature contributes less that 2%

of the somatic mutations or less than 50 somatic mutations. Exceptions were made for Signatures 1 and 5 as these are believed

to reflect on-going endogenous mutational processes that continuously contribute very low numbers of somatic mutations (Alexan-

drov et al., 2013a). Further, the model selection framework selects the solution that optimizes the Pearson correlation between the

original pattern of somatic mutations and the one based on refitting the sample with consensus mutational signatures such that each

additional signature should improve the Pearson correlation with at least 0.02. The final solution for each sample contained between

3-6mutational signatures and these signatures were consistent with the ones previously identified by the de novo analysis: Signature

1, Signature 2, Signature 3, Signature 5, Signature 8, and Signature 13.

Telomere Length Estimates
Telomerecat is a de novomethod for the estimation of telomere length fromwhole genome sequencing samples. The algorithmworks

by comparing the ratio of complete telomere reads to reads on the boundary between telomere and subtelomere. The ratio is trans-

formed to a measure of length using a simulation approach that takes into account the fragment length distribution of the sample. By

considering the ratio of complete telomere reads to boundary reads, Telomerecat estimates coverage over the telomere without

interface from the affects of aneuploidy, a common occurrence in cancer. Telomerecat also corrects for error in sequencing reads

by modeling the observed distribution of phred scores associated with mismatches to the telomere sequence.

Case PD8948 and Whole Genome Sequencing and Analysis of an FFPE Sample
For all but one cancer in the dataset we found that thousands or tens of thousands of somatic substitutions were shared by the pri-

mary and metastasis sample. In one case (PD8948) however, we determined from the clonal mapping of over 16,000 somatic sub-

stitutions, indels and structural variants that the two fresh frozen DNA samples from tumors in the left and right breast (samples

PD8948d and PD8948e respectively) sampled 1 year apart were clonally unrelated cancers. Only 95 (0.6%) point mutations were

detected in both samples, none of which fell within coding regions, and validation through visual inspection and/ or targeted capture

pulldown failed to identify any mutation as a true positive in both samples. Copy number profiles and structural variant profiles from

the two cancers were also distinct. In the absence of shared somatic events we conclude that these samples are derived from 2 in-

dependent primary tumors. The samples however, shared thousands of germline SNPs and a BRCA1 frame-shift mutation confirm-

ing that they are derived from the same individual who was a known germline BRCA1 mutation carrier.

To further explore the clonal evolution of this patient’s cancers we identified 2 additional FFPE samples from earlier tumor deposits

within the left breast (PD8948a and PD8948c). These samples were subjected to targeted gene panel sequencing and the likely

phylogenetic relationships between the four samples were then inferred from coding non-synonymous mutations as demonstrated

in Figure S3A. The findings were consistent with the patient having developed 3 separate primary tumors during her lifetime, each

containing a distinct TP53 mutation. Two samples (PD8948c and PD8948e) harbored identical TP53 (p.Y220C) and KDM6A muta-

tions suggesting that the later sample represented distant relapse. Genome-wide analysis could provide conclusive evidence to

confirm the relatedness of two such samples, however one sample (PD8948c) was derived from a 7 year old FFPE sample and there

is little experience of whole genome sequencing of FFPE derived tumors. Weand others have previously shown low error rates for

gene capture and whole exome sequencing of FFPE samples but to date we are only aware of the results from a single tumor sample

sequenced to whole genome level and the widespread applicability of this single case is unclear. We predicted that the process of

fixation and storage of such material could result in the introduction of technical artifacts and could compromise mutation-calling

sensitivity. However, for the purposes of this experiment identifying a significant overlap of mutations called in the later sample

(PD8948e) would confirm relatedness of the samples.

Library preparation of the FFPE sample was performed following our standard protocol and the tumor sample and amatched blood

derived normal sample were sequenced to 31X and 38X respectively using Illumina X10�. Mutations were called using the same

algorithms as previously described. Confirming the clonal relationship of the two samples, a significant proportion of somatic muta-

tions of all classes – substitutions (25%), indels (18%) and structural variants (14%), were shared. This equates to almost 2,000 com-

mon somatic mutations, genome-wide (Figure S3B).
e6 Cancer Cell 32, 169–184.e1–e7, August 14, 2017



Analysis of other whole genome triplet cases within the cohort identified that all metachronous samples contain a significant

excess point mutation burden compared to the primary tumor. However, this was inconsistent in this case, where the presumed pri-

mary tumor (PD8948c, FFPE) and the relapse sample obtained 3 years later (PD8948e, fresh frozen) contained a similar private point

mutation burden (Figure S3B). We investigated whether the unexpected excess of FFPE specific mutations was a likely biological or

technical phenomenon by comparing the mutation spectra in the 2 samples. The substitution profile within the FFPE sample indi-

cated an excess of C>A base changes and these tended to occur in the context of one or two 5 prime cytosine nucleotides (Fig-

ure S3C). To investigate this further we applied formal mutational signature analysis to the private and shared branches from an

inferred phylogenetic tree derived from these samples (Figure S3D). The analysis confirmed that the shared mutations were drawn

from 3 mutation signatures – two clock-like signatures and a dominant signature associated with homologous recombination defi-

ciency (signature 3), consistent with the known BRCA1mutation carrier status. Private mutations identified in the fresh frozen sample

(PD8948e) followed an almost identical signature distribution. In contrast, none of themutations that were private to the FFPE sample

were assigned to these signatures, but rather were purely assigned to a mutation signature (R2) - a known sequencing artifact that

arises due to oxidative damage and has previously been described in relation to exome library preparation (Costello et al., 2013). In

constructing the phylogenetic tree in Figure 1 we therefore omit a private to primary tumor branch, although it is conceivable that a

small number of true private mutations were undetected due to the presence of an overwhelming artifact.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was performed and graphics produced using R version 3.0.1: A language and environment for statistical

computing (R Foundation for Statistical Computing, Vienna, Austria. Alignment viewing was performed using Gbrowse�, Jbrowse�,

Samtools� tview and IGV�. All hypothesis tests were 2-sided when appropriate and statistical tests used are specified in Results

and figure legends.

DATA AND SOFTWARE AVAILABILITY

Targeted and whole genome sequence data has been deposited at the European Genome-Phenome Archive (https://www.ebi.ac.

uk/ega/ at the EBI) with accession numbers:

d Targeted (2939stdy) EGAD00001002698;

d Exome (492stdy): EGAD00001002697;

d Whole genome (2040stdy): EGAD00001002696.

Full somatic mutation calls (substitutions, indels and structural variants) for each individual cancer analyzed by whole genome

sequencing are available for download from Mendeley Data. The link for the dataset is: http://dx.doi.org/10.17632/g7kpzkhz8c.1

The most recent version of our whole genome sequencing mutation pipeline is available as a Docker image. This, together with

documentation, can be accessed from https://dockstore.org/containers/quay.io/pancancer/pcawg-sanger-cgp-workflow.
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