9,224 research outputs found

    Particle-in-cell and weak turbulence simulations of plasma emission

    Full text link
    The plasma emission process, which is the mechanism for solar type II and type III radio bursts phenomena, is studied by means of particle-in-cell and weak turbulence simulation methods. By plasma emission, it is meant as a loose description of a series of processes, starting from the solar flare associated electron beam exciting Langmuir and ion-acoustic turbulence, and subsequent partial conversion of beam energy into the radiation energy by nonlinear processes. Particle-in-cell (PIC) simulation is rigorous but the method is computationally intense, and it is difficult to diagnose the results. Numerical solution of equations of weak turbulence (WT) theory, termed WT simulation, on the other hand, is efficient and naturally lends itself to diagnostics since various terms in the equation can be turned on or off. Nevertheless, WT theory is based upon a number of assumptions. It is, therefore, desirable to compare the two methods, which is carried out for the first time in the present paper with numerical solutions of the complete set of equations of the WT theory and with two-dimensional electromagnetic PIC simulation. Upon making quantitative comparisons it is found that WT theory is largely valid, although some discrepancies are also found. The present study also indicates that it requires large computational resources in order to accurately simulate the radiation emission processes, especially for low electron beam speeds. Findings from the present paper thus imply that both methods may be useful for the study of solar radio emissions as they are complementary.Comment: 21 pages, 9 figure

    Avalanches in a Bose-Einstein condensate

    Get PDF
    Collisional avalanches are identified to be responsible for an 8-fold increase of the initial loss rate of a large 87-Rb condensate. We show that the collisional opacity of an ultra-cold gas exhibits a critical value. When exceeded, losses due to inelastic collisions are substantially enhanced. Under these circumstances, reaching the hydrodynamic regime in conventional BEC experiments is highly questionable.Comment: 4 pages, 2 figures, 1 tabl

    Assessment Study of Small Space Debris Removal by Laser Satellites

    Get PDF
    Space debris in Earth orbit poses significant danger to satellites, humans in space, and future space exploration activities. In particular, the increasing number of unidentifiable objects, smaller than 10 cm, presents a serious hazard. Numerous technologies have been studied for removing unwanted objects in space. Our approach uses a short wavelength laser stationed in orbit to vaporize these small objects. This paper discusses the power requirements for space debris removal using lasers. A short wavelength laser pumped directly or indirectly by solar energy can scan, identify, position, and illuminate the target, which will then be vaporized or slow down the orbital speed of debris by laser detonation until it re-enters the atmosphere. The laser-induced plasma plume has a dispersive motion of approximately 105 m/sec with a Lambertian profile in the direction of the incoming beam [1-2]. The resulting fast ejecting jet plume of vaporized material should prevent matter recombination and condensation. If it allows any condensation of vaporized material, the size of condensed material will be no more than a nanoscale level [3]. Lasers for this purpose can be indirectly pumped by power from an array of solar cells or directly pumped by the solar spectrum [4]. The energy required for vaporization and ionization of a 10 cm cube (~ 2700 gm) of aluminum is 87,160 kJ. To remove this amount of aluminum in 3 minutes requires a continuous laser beam power of at least 5.38 MW under the consideration of 9% laser absorption by aluminum [5] and 5% laser pumping efficiency. The power needed for pumping 5.38 MW laser is approximately 108 MW, which can be obtained from a large solar array with 40% efficiency solar cells and a minimal area of 450 meters by 450 meters. This solar array would collect approximately 108 MW. The power required for system operation and maneuvering can be obtained by increasing solar panel size. This feasibility assessment covers roughly the power requirement, laser system, and a potential operational scenario

    Meta-Learning for Phonemic Annotation of Corpora

    Get PDF
    We apply rule induction, classifier combination and meta-learning (stacked classifiers) to the problem of bootstrapping high accuracy automatic annotation of corpora with pronunciation information. The task we address in this paper consists of generating phonemic representations reflecting the Flemish and Dutch pronunciations of a word on the basis of its orthographic representation (which in turn is based on the actual speech recordings). We compare several possible approaches to achieve the text-to-pronunciation mapping task: memory-based learning, transformation-based learning, rule induction, maximum entropy modeling, combination of classifiers in stacked learning, and stacking of meta-learners. We are interested both in optimal accuracy and in obtaining insight into the linguistic regularities involved. As far as accuracy is concerned, an already high accuracy level (93% for Celex and 86% for Fonilex at word level) for single classifiers is boosted significantly with additional error reductions of 31% and 38% respectively using combination of classifiers, and a further 5% using combination of meta-learners, bringing overall word level accuracy to 96% for the Dutch variant and 92% for the Flemish variant. We also show that the application of machine learning methods indeed leads to increased insight into the linguistic regularities determining the variation between the two pronunciation variants studied.Comment: 8 page

    Development of Navigation Control Algorithm for AGV Using D* Search Algorithm

    Full text link
    In this paper, we present a navigation control algorithm for Automatic Guided Vehicles (AGV) that move in industrial environments including static and moving obstacles using D* algorithm. This algorithm has ability to get paths planning in unknown, partially known and changing environments efficiently. To apply the D* search algorithm, the grid map represent the known environment is generated. By using the laser scanner LMS-151 and laser navigation sensor NAV-200, the grid map is updated according to the changing of environment and obstacles. When the AGV finds some new map information such as new unknown obstacles, it adds the information to its map and re-plans a new shortest path from its current coordinates to the given goal coordinates. It repeats the process until it reaches the goal coordinates. This algorithm is verified through simulation and experiment. The simulation and experimental results show that the algorithm can be used to move the AGV successfully to reach the goal position while it avoids unknown moving and static obstacles. [Keywords— navigation control algorithm; Automatic Guided Vehicles (AGV); D* search algorithm

    Uji Patogenitas Bacillus Thuringiensis Var. Israelensis Terhadap Larva Nyamuk Aedes SP. Sebagai Biokontrol Penyebab Penyakit Demam Berdarah Dengue Di Denpasar Tahun 2014

    Full text link
    The Dengue Hemorrhagic Fever (DHF) in Indonesia increases every year. In 2008, cases of DHF in Indonesia accounted 137,469 cases (IR: 59.02 per 100,000 population, CFR 0.86%). This increased in 2009 to 154,855 DHF cases (IR: 66.48 per 100,000, CFR 0.89%). In 2010, Indonesia experienced the highest DHF case in ASEAN, namely 156,086 cases with 1,358 deaths (Kemenkes, 2011). Many preventive efforts had been carried out to eradicate Aedes sp. The bioinsecticide vector control using Bacillus thuringiensis is safe for the environment and humans compared to the synthetic insecticides. This study evaluated the pathogenicity of B. thuringiensis against larvae of Aedes sp. in Denpasar city. This study conducted Quasy Experimental Design of 6 treatments, concentrations of 50 µL, 40 µL, 30 µL, 20 µL, 10 µL and 1 control, with 4 repetitions. The number of cells and spores of B. thuringiensis used in this study was 11.2 x 109 cfu/ml and 7.43 x 109 cfu/ml, respectively. The highest mean score difference compared to the control was the 50 µL concentration with average larvae mortality at 6 hours of 96%, increasing to 100% in 12 and 24 hours. LC50 concentration within 6 hours was 4 µl/L, and LC90 concentration was 16 µl/L. Using statistical test, average mortality of larvae Aedes sp. at all concentrations were similar (p ? 0.005). The greater concentration of B. thuringiensis and the longer exposure time leads to a greater mortality of Aedes sp. larvae
    • …
    corecore