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Abstract

We apply rule induction, classifier combina-
tion and meta-learning (stacked classifiers)
to the problem of bootstrapping high accu-
racy automatic annotation of corpora with
pronunciation information. The task we
address in this paper consists of generat-
ing phonemic representations reflecting the
Flemish and Dutch pronunciations of a word
on the basis of its orthographic represen-
tation (which in turn is based on the ac-
tual speech recordings). We compare several
possible approaches to achieve the text-to-
pronunciation mapping task: memory-based
learning, transformation-based learning, rule
induction, maximum entropy modeling, com-
bination of classifiers in stacked learning, and
stacking of meta-learners. We are interested
both in optimal accuracy and in obtaining in-
sight into the linguistic regularities involved.
As far as accuracy is concerned, an already
high accuracy level (93% for Celex and 86%
for Fonilex at word level) for single classifiers
is boosted significantly with additional error
reductions of 31% and 38% respectively using
combination of classifiers, and a further 5%
using combination of meta-learners, bringing
overall word level accuracy to 96% for the
Dutch variant and 92% for the Flemish vari-
ant. We also show that the application of
machine learning methods indeed leads to in-
creased insight into the linguistic regularities
determining the variation between the two
pronunciation variants studied.

1. Introduction

The context of this research is a large-scale Dutch-
Flemish project “Corpus Gesproken Nederlands”
(Corpus Spoken Dutch, CGN) in which a 10 million

word spoken corpus is collected and linguistically an-
notated. One of the annotation layers is a representa-
tion of the pronunciation of the recorded speech (the
phonemic representation). As available speech recog-
nition technology is not yet up to generating this an-
notation automatically, it has to be produced from
the (manually transcribed) orthographic transcription.
The task is complicated by the fact that these pronun-
ciation representations should reflect either Flemish
(the variant of Dutch spoken in the North of Belgium)
or Dutch pronunciation, depending on the origin of
different parts of the corpus.

To generate the phonemic representations, we need ac-
curate grapheme-to-phoneme conversion (the part of
speech synthesis which converts spelling into phone-
mic representations). It can be described as a func-
tion mapping the spelling of words to their phonetic
symbols. Since the spelling of a word is ambiguous
regarding its pronunciation, what is a correct phone-
mic transcription is contextually determined. One of
the possibilities to tackle the problem is to develop
a system that captures the linguistic knowledge of a
given language in a set of rules with the disadvan-
tage that hand crafting linguistic rules is a rather
difficult and time consuming task. Moreover, this
task has to be restarted every time a grapheme-to-
phoneme convertor is developed for a new language.
Examples of knowledge-rich expert systems are those
of Allen (1987) and of Divay and Vitale (1997). Man-
ual encoding of linguistic information, however, is be-
ing challenged by data-driven methods since the ex-
traction of linguistic knowledge from a sample text
corpus can be a powerful method for overcoming the
linguistic knowledge acquisition bottleneck. Different
approaches have already been used, such as the use
of learning algorithms to pronounce unknown words
by analogy to familiar lexical items (Dedina & Nus-
baum, 1991), decision-tree learning (Dietterich, 1997),
a neural network or connectionist approach (Sejnowski
& Rosenberg, 1987) or memory-based learning (Daele-
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mans & van den Bosch, 1996). Data-driven approaches
can yield comparable (and sometimes even more accu-
rate) results than the rule-based approach.

In this paper, we are concerned with two questions.
First, we investigate the level of accuracy that can
be obtained using various machine learning techniques
trained on two available lexical databases containing
examples of the pronunciation of Flemish and Dutch.
We examine whether one variant of Dutch can add
valuable information to the prediction of the other
in cascaded or stacked classifiers. Different individ-
ual classifiers were combined in order to obtain an im-
proved estimator. In the machine learning literature,
this approach is called ensemble, stacked or combined
classifiers (Dietterich, 1997). The underlying idea is
that, when the errors committed by the individual
classifiers are uncorrelated to a sufficient degree and
their error rate is low enough, the resulting combined
classifier will perform better. This approach, while
common in the Machine Learning literature, has only
recently been introduced in natural language process-
ing research (e.g., van Halteren, Zavrel, and Daele-
mans (1998) for word class disambiguation). In the
research presented here, we discuss the combination
of different classifiers trained on the same or slightly
different tasks. This contrasts with other ensemble
methods which combine subsets of the training data
(as in bagging) or which combine multiple versions of
the training data in which previously misclassified ex-
amples get more weight (as in boosting). In this paper,
we empirically examine whether these combined clas-
sifiers result in substantial accuracy improvements in
learning grapheme-to-phoneme conversion. Our sec-
ond research question concerns the use of rule induc-
tion as a method to model the systematicity implicit
in the differences between Flemish and Dutch pronun-
ciation.

The training data for our experiments consists of two
lexical databases representing Dutch and Flemish. For
Dutch, Celex (release 2) was used and for Flemish
Fonilex (version 1.0b). The Celex database contains
frequency information (based on the INL corpus), and
phonological, morphological, and syntactic lexical in-
formation for more than 384,000 word forms, and uses
the DISC representation as encoding scheme for word
pronunciation. Fonilex is a list of more than 200,000
word forms together with their Flemish pronunciation.
For each word form, an abstract lexical representa-
tion is given, together with the concrete pronuncia-
tion of that word form in three speech styles: highly
formal speech, sloppy speech and “normal” speech
(which is an intermediate level). A set of phonolog-
ical rewrite rules was used to deduce these concrete

speech styles from the abstract phonological form. The
initial phonological transcription was obtained by a
grapheme-to-phoneme converter and was afterwards
corrected by hand. Fonilex uses YAPA (comparable to
DISC) as encoding scheme. The Fonilex entries also
contain a reference to the Celex entries, since Celex
served as basis for the list of word forms in Fonilex.
The word forms in Celex with a frequency of 1 and
higher are included in Fonilex and from the list with
frequency 0 (words not attested in a reference corpus),
only the monomorphematic words were selected.

In the following section, we first explain our experi-
mental setup, describing the data sets being used in
the different experiments. An overview of the experi-
ments is also provided. In section 3, we introduce the
experimental methods and we go on to report the over-
all results of the experiments. Section 4 shows that the
use of machine learning techniques, and especially the
use of rule induction techniques, leads to an increased
insight into the linguistic regularities determining the
variation between the two pronunciation variants. In a
final section we conclude with a summary of the most
important observations.

2. Experimental Setup

The training data for the text-to-pronunciation ex-
periments are two corpora, representing the North-
ern Dutch and Flemish variants. The data set we
used consists of all Fonilex entries with omission of
the double entries. In case of double word forms with
different possible transcriptions, all different transcrip-
tions were taken, as in the word “caravan”, which
can be phonemically represented as /kArAvAn/ or as
/kErEvEn/. These double transcriptions only appear in
Fonilex, which explains why the text-to-pronunciation
task for Flemish is more difficult. Also words the
phonemic transcription of which is longer than the
orthography and for which no compound phonemes
are provided, are omitted, e.g. ”b’tje” (Eng.: “little
b”)(phonemically: /be:tj�/). DISC is used as phone-
mic encoding scheme. All DISC phonemes are in-
cluded and new phonemes are created for the phonemic
symbols which only occur in the Fonilex data base.

Before passing the data through the machine learn-
ing program, alignment (Daelemans & van den Bosch,
1996) is performed for the graphemic and phonemic
representations of Celex and for those of Fonilex, since
the phonemic representation and the spelling of a word
often differ in length. Therefore, the phonemic sym-
bols are aligned with the graphemes of the written
word form. In case the phonemic transcription is
shorter than the spelling, null phonemes (/-/) are used



to fill the gaps. In the example “aalmoezenier” (Eng.:
“chaplain”) this results in the following alignment:

Table 1. The use of phonetic null insertion in the word
“aalmoezenier”

a a l m o e z e n i e ra: - l m u: - z � n i: - r
A further step in the preparation of the data, consists
of the use of an extensive set of so-called “compound
phonemes”. Compound phonemes are used whenever
graphemes map with more than one phoneme, e.g.
the word ’jubileum’ aligns to /j}bIl]}m/ in which the
compound phoneme /]/ stands for /ej/. Both align-
ment and the use of compound phonemes leads to a
corpus consisting of 173,874 word forms or 1,769,891
phonemes for each of the variants.

In order to achieve the grapheme-to-phoneme mapping
task, we used different approaches:

1. Training two single classifiers on lexical databases
containing examples of the pronunciation of
Dutch and Flemish, respectively, using memory-
based learning.

2. Training classifiers for each pronunciation variant
using the predicted output for the other as an
additional information source in

• a cascaded approach and
• classifier combination.

3. Trying to improve the results of classifier combi-
nation by combining the combination classifiers.

In these experiments, the text-to-pronunciation task is
defined as the conversion of fixed-size instances repre-
senting the grapheme with a certain context to a class
representing the target phoneme, as shown in Table 2,
using a technique proposed by Sejnowski and Rosen-
berg (1987).

Table 2. Example of instances generated from the word
“eet” (Eng. “eat”) for the word-pronunciation task in the
single classifier training experiment.

left context focus right context classification
= = = e e t = e
= = e e t = = -
= e e t = = = t

In the cascade and classifier combination experiments,
the instances contain both graphemic and phonemic
information. In this study, we choose a fixed window
width of seven, which offers sufficient context informa-
tion for adequate performance. Extending the window

would make the meta-meta-classifier experiment com-
putationally very costly.

In all experiments, except when explicitly mentioned
otherwise, ten-fold cross-validation (Weiss & Ku-
likowski, 1991) is used as experimental method for er-
ror estimation. All experiments, both the component
and combination experiments were performed on the
same data set partitions for both variants of Dutch.
E.g., in the classifier combination experiment, where
output of both a classifier trained on Celex and a clas-
sifier trained on Fonilex is used as input, this par-
allel way of working is necessary, since it has to be
avoided that one component classifier is trained on
data held out in the training of the other component
classifier. A non-parallel way of working could lead
to over-optimistic accuracies for the classifier combi-
nation experiments.

3. Learning Dutch Word Pronunciation

In the following subsections a brief introduction is
given to each approach, followed by a description of
the experiments and a brief discussion of the results.

3.1 Single Classifiers

In order to obtain a high accuracy grapheme-to-
phoneme convertor, different approaches were studied.
In a first approach, one single classifier is trained on
Fonilex and another classifier on Celex.

For this experiment we have made use of Timbl
(Daelemans et al., 1999), a software package imple-
menting several memory-based learning (lazy learn-
ing) techniques. Memory-based learning is a learn-
ing method which is based on storing all examples
of a task in memory and then classifying new exam-
ples by similarity-based reasoning from this memory
of examples. The approach is argued to be especially
suited for natural language processing (NLP) because
of the abundance of sub-regularities and exceptions
in most NLP problems (Daelemans, van den Bosch,
& Zavrel, 1999), and has been successfully applied
to the grapheme-to-phoneme conversion problem be-
fore (Daelemans & van den Bosch, 1996). The algo-
rithm used for this experiment is called IB1-IG. IB1-
IG (Daelemans et al., 1997) extends the basic k-nn al-
gorithm with information gain ratio (Quinlan, 1991)
feature weighting. IB1-IG builds a database of in-
stances during learning. During testing, the distance
between a test item and each memory item is defined
as the number of features for which they have a differ-
ent value. IG (information gain ratio) weighting looks
at each feature in isolation and measures how much



information it contributes to the reduction of uncer-
tainty about the correct class label. These measures
are used as feature weights in computing the distance
between items.

In Table 3, an overview is given of the generalisa-
tion accuracy using the IB1-IG algorithm on Celex
and Fonilex. For Celex, a generalisation accuracy of
99.16% is reached at the phoneme level, and of 93.00%
on the word level. For Fonilex, which has a more com-
plex phonemic representation and in which word forms
can have more than one phonemic transcription, per-
centages are lower: IB1-IG correctly classifies 98.18%
of the phonemes and 86.37% of the words.

Table 3. Generalisation accuracy on the word and phoneme
level of two single classifiers, trained on Celex and Fonilex,
respectively. The last column provides the standard devi-
ation on the phoneme level.

Words Phonemes ±

Celex 93.00 99.16 0.03
Fonilex 86.37 98.18 0.04

Apart from the spelling, we did not have additional
information to further improve the generalization ac-
curacy. Given that the classifiers for Flemish and
Dutch are trying to learn very similar but neverthe-
less slightly different mappings, we investigate in the
next subsection whether the predicted output of the
one could help in making more accurate the predicted
output of the other to further improve the accuracy of
the grapheme-to-phoneme convertors.

3.2 Cascade and Classifier Combination

In this section, the experiments in which single classi-
fiers are trained on Celex and Fonilex, respectively, are
taken as the basis for various experiments, as displayed
in Figure 1. Four different experiments are performed
using this point of view. In all experiments, the IB1-
IG algorithm, as described in 3.1, is used to perform
the text-to-pronunciation mapping task.

• In (i) a single classifier is trained on one of both
pronunciation variants; in a second step, the out-
put of this process is used as input for training
another classifier for the other variant.

• In (ii), the same information is used, but the
spelling information, together with the predicted
output of the classifier trained on the other vari-

ant in the experiment described in 3.1 is used as
an input pattern for a second classifier.

• In (iii), spelling information together with the
output of both classifiers described in Section 3.1.,
is given to train a classifier.

###gaat

Spelling

/G/

Fonilex
to

Direct
transition

Cascade System Combination

###gaat

Spelling

Celex

###xat#

Celex 

Fonilex

/G/

to

to

###gaat###xat#

+
Spelling 

output Direct Celex

/G/

Fonilex
to

Figure 1. Architecture of three different approaches ap-
plied to the Fonilex phonemic transcription: training a
single classifier on Fonilex, training a classifier for Fonilex
using the predicted output for Celex as an additional infor-
mation source in a cascade and in classifier combination.

In Table 4, an overview is given of the generalisation
accuracy of the different classifiers. The combination
classifier which generates the highest percentage of
generalisation errors is indicated in bold.

Table 4. Generalisation accuracy of the cascaded approach
and classifier combination.

Celex Words Phonemes ±

(i) 92.90 99.10 0.04
(ii) 94.18 99.28 0.03
(iii) 95.16 99.40 0.02

Fonilex

(i) 87.58 98.29 0.03
(ii) 88.03 98.36 0.03
(iii) 91.55 98.89 0.04

For both Celex and Fonilex, the experiment in which
spelling and predicted output for both problems are
combined in a meta-classifier yields the highest ac-
curacy: 99.40% on the phoneme level for Celex and
98.89% for Fonilex, corresponding with 95.16% and
91.55% respectively at the word level. Interestingly,
adding a classifier in the combination having learned
a particular task (e.g. Flemish) can help boost perfor-
mance on a different but similar task (Dutch).

3.3 Combining the Combination Classifiers

In this section we further explore the use of system
combination in the grapheme-to-phoneme conversion



task by combining combined classifiers, as displayed
in Figure 2.

Four different meta-classifiers are used, viz. C5.O
(described in Section 4), IB1-IG (described in 3.1),
IGTREE (Daelemans, van den Bosch, & Weijters,
1997) and MACCENT.1 IGTREE is an optimised ap-
proximation of the instance-based learning algorithm
IB1-IG. In IGTREE, the database of instances is com-
pressed into a decision tree, consisting of paths of con-
nected nodes ending in leaves which contain classifi-
cation information. Information gain is used to deter-
mine the order in which the feature values are added as
arcs to the tree. The last meta-classifier, MACCENT,
is an implementation of maximum entropy modeling
allowing symbolic features as input. The package takes
care of the translation of symbolic values to binary
feature vectors, and implements the iterative scaling
approach to finding the probabilistic model.

IB1-IGC5.0

Classifier
Celex

Spelling+ +
Classifier
Fonilex

Meta-meta-classifier

IGTREE MACCENT

Figure 2. Architecture of the meta-meta-learning process.
Component meta-classifiers are C5.O, IB1-IG, IGTREE,
MACCENT

The results of these four combination classifiers are
used to train a so-called “meta-meta-classifier”, for
the training of which IB1-IG is used. The reason-
ing behind this experiment is that the same way a
meta-classifier can overcome some of the errors of dif-
ferent “object-classifiers” learning a similar task, a
“meta-meta-classifier” should be able to do the same
for meta-classifiers. In these experiments, the combi-
nation classifiers are trained on spelling information
together with the output of both object classifiers de-
scribed in Section 3.1. The predictions of the four
stacked classifiers are then fed to a new combination
classifier.

In this section we reported research on the generation
of a maximally accurate phonemic representation for
both Dutch and Flemish reflecting the pronunciation
of a given word on the basis of its orthographic repre-
sentation. In order to obtain high accuracy automatic
annotation, different approaches were used. These ex-

1Details on how to obtain Maccent can be found on:
http://www.cs.kuleuven.ac.be/∼ldh/

Table 5. Generalisation accuracy of each meta-classifier
and the meta-meta-classifier (indicated by “IB1-IG-
meta”).

Celex Words Phonemes ±

(C5.0) 93.03 99.16 0.03
(IB1-IG) 95.16 99.40 0.02
(IGTREE) 94.94 99.37 0.03
(MACCENT) 92.07 99.03 0.05
(IB1-IG-meta) 95.53 99.45 0.02

Fonilex

(C5.0) 88.41 98.48 0.05
(IB1-IG) 91.55 98.89 0.04
(IGTREE) 91.33 98.85 0.04
(MACCENT) 87.27 98.28 0.04
(IB1-IG-meta) 92.25 98.99 0.03

periments showed that the memory-based learning al-
gorithms performed well on the text-to-pronunciation
mapping task. Training single classifiers on both vari-
ants of Dutch already resulted in generalisation accu-
racies of about 99% at the phoneme level for Celex and
98% for Fonilex (93% and 86% at the word level re-
spectively). Making use of classifier combination with
information predicted by a classifier for the other pro-
nunciation variant led to further reductions of the error
at the word level of about 31% for Celex and 38% for
Fonilex to which meta-meta-learning added a limited
but significant additional reduction (5%). The already
high accuracy level for single classifiers is boosted sig-
nificantly using combination of classifiers and combi-
nation of meta-learners. With this high level of accu-
racy, automatic phonemic conversion becomes an in-
creasingly more useful annotation tool.

4. Rule Induction

Apart from being after high accuracy, we are also inter-
ested in insight into the linguistic regularities govern-
ing the differences between the two regional variants
of Dutch. Using rule induction techniques, we inves-
tigate whether machine learning techniques reproduce
the theoretical analysis of linguists, and whether rules
can be induced that accurately translate one variant
into the other.

4.1 Experiments

We first focus on the question whether it is possible
to predict one variant on the basis of the phonemic
representation of the other. Our starting point is the
assumption that the differences in the phonemic tran-
scriptions between Flemish and Dutch are highly sys-
tematic, and can be represented in a set of rules, which
provide linguistic insight into the overlap and discrep-

http://www.cs.kuleuven.ac.be/~ldh/


ancies between both variants. Moreover, they can
be used to adapt pronunciation databases for Dutch
automatically to Flemish and vice versa. In our ex-
periment we used two rule induction techniques, viz.
Transformation-based error-driven learning (TBEDL)
(Brill, 1995), a learning method popular in NLP, and
the well-known C5.0 (Quinlan, 1993).

In TBEDL, transformation rules are learned by com-
paring a corpus that is annotated by an initial-state
annotator to a correctly annotated corpus, which is
called the “truth”. In this study, the Fonilex rep-
resentation functions as “truth”, and the Celex rep-
resentation as initial-state annotation. The task is
to learn how to transform Celex representations into
Fonilex representations (i.e., translate Dutch pronun-
ciation to Flemish pronunciation). Rule induction is
greedy, is triggered by differences between the initial-
state representations and the truth, and constrained
by a number of user-defined patterns restricting the
context. This learning process results in an ordered
list of transformation rules which reflects the system-
atic differences between both representations. A rule
is read as: “change x (Celex) into y (Fonilex) in the
following triggering environment”. E.g.,

/i:/ /I/ NEXT 1 OR 2 OR 3 PHON /e:/
(change a tense /i/ to a lax /i/ when one of the
three following Celex phonemes is a tense /e/).

C5.0, on the other hand, which is a commercial ver-
sion of the C4.5 program, generates a classifier in the
form of a decision tree. Since decision trees can be
hard to read, the decision tree is converted to a set
of production rules, which are more intelligible to the
user. The rules have the form “L -> R”, in which the
left-hand side is a conjunction of attribute-based tests
and the right-hand side is a class. When classifying a
case, the list of rules is examined to find the first rule
whose left-hand side satisfies the case. In this experi-
ment we have made use of a context of three phonemes
preceding (indicated by f-1, f-2, and f-3) and following
(f+1, f+2, f+3) the focus phoneme, which is indicated
by an ’f’. The predicted class for this case is then the
right-hand side of the rule. At the top of the rule the
number of training cases covered by the rule is given
together with the number of cases that do not belong
to the class predicted by the rule. The “lift” is the
estimated accuracy of the rule divided by the prior
probability of the predicted class. E.g.,

(6422/229, lift 79.0)
f = i:
f+1 in {m, b, t, r, k, N, G, f, n, v, h, d, l, p,s, z, S, (...)}
-> class I [0.964]

In TBEDL, the complete training set of 90% was used

for learning the transformation rules. A threshold
of 15 errors was specified, which means that learn-
ing stops if the error reduction lies under that thresh-
old. For the C5.0 experiment, 50% (796,841 cases) of
the original training set served as training set (more
training data was computationally not feasible on our
hardware). A decision tree model and a production
rule model were built from the training cases. The
tree gave rise to 671 rules, which were applied to the
original 10% test set we used in the Brill experiment.
In order to make the type of task comparable for the
transformation based approach used by TBEDL, in
the classification-based approach used in C5.0, the
output class to be predicted by C5.0 was either ‘0’
when the Celex and Fonilex phoneme are identical (i.e.
no change), or the Fonilex phoneme when Celex and
Fonilex differ (mimicking a transformation approach).

Table 6 gives an overview of the overlap between Celex
and Fonilex after application of both rule induction
techniques. A comparison of these results shows that,
when evaluating both TBEDL and C5.0 on the test set,
the transformation rules learned by the Brill-tagger
have a higher error rate, even when C5.0 is only trained
on half the data used by TBEDL. On the word level,
the initial overlap of 55.25% is raised to 83.01% af-
ter application of the 430 transformation rules, and to
85.93% when using the C5.0 rules. On the phoneme
level, the 92.20% of the initial overlap is increased to
97.74% (TBEDL) and 98.14% (C5.0). A closer analy-
sis of the rules produced during TBEDL reveals that
the first 50 rules lead to a considerable increase of per-
formance from 55.25% to 76.19% on the word level and
from 92.20% to 96.62% on the phoneme level, which
indicates the high applicability of these rules. After-
wards, the increase of accuracy is more gradual: from
76.19% to 83.01% (words) and from 96.62% to 97.74%
(phonemes).

Table 6. Overlap between Celex and Fonilex after applica-
tion of all transformation rules and C5.0 production rules.

Words Phonemes
TBEDL 83.01 97.74
C5.0 85.93 98.14

When looking only at those cases where Celex and
Fonilex differ, we see that it is possible to learn trans-
formation rules which predict 62.0% of the differences
at the word level and 71.0% of the differences at the
phoneme level. The C5.0 rules are more or less 5-7%
more accurate: 68.6% (words) and 76.2% (phonemes).
It is indeed possible to reliably ‘translate’ Dutch into
Flemish. These results, however, are below the re-
sults generated in the preceding experiment where



there is a direct transition from spelling to Fonilex and
from spelling to Celex. The rule-induction process de-
scribed above requires a first component which does
the transition from spelling to the phonemic Celex
transcription. In order to obtain a Fonilex transcrip-
tion, the rules generated by TBEDL or C5.0 are ap-
plied to the output of the first component.

4.2 Linguistic Regularities

In this section we will discuss some example rules gen-
erated for consonants and vowels. Starting point is the
first ten rules that were learned during TBEDL, which
will be compared with the ten C5.0 rules, which most
reduce the error rate.

4.2.1 Consonants

Nearly half of the differences on the consonant level
concerns the alternation between voiced and unvoiced
consonants. In this group, the alternation between
/x/ and /G/ is the most frequent one. In the word
“gelijkaardig” (Eng.: “equal”), for example, we find
a /x�lEika:rd�x/ with a voiceless velar fricative in
Dutch and /G�lEika:rd�x/ with a voiced velar frica-
tive in Flemish. The word “machiavellisme” (Eng.:
“Machiavellism”) is pronounced as /mAGi:ja:vElIsm�/
in Dutch and as /mAkIjAvElIzm�/ in Flemish.

This alternation also is the subject of the first trans-
formation rule that was learned, namely “x G PREV
1 OR 2 PHON STAART” which can be read as “/x/
changes into /G/ in case of a word beginning one or
two positions before”. When looking at the ten most
important C5.0 rules, this alternation is described in:

(6814/27, lift 109.5)
f-1 in {=, E:}
f = x
-> class G [0.996]

Another important phenomenon is the use of palatal-
isation in Flemish, as in the word “aaitje” (Eng.:
“stroke”), where Fonilex uses the palatalized form
/a:jtS�/ instead of /a:jtj�/. This change is also
described by both top ten Brill and C5.0 rules.

4.2.2 Vowels

The most frequent difference at the vowel level be-
tween Dutch and Flemish concerns the use of a lax
vowel instead of a tense vowel for the /i:/, /e:/, /a:/,
/o:/ and /u:/. Tense Celex-vowels not only correspond
with tense, but also with lax vowels in Fonilex. Other
less frequent differences are glide insertion, e.g. in “ge-
shaket” and the use of schwa instead of another vowel,

as in “teleprocessing” in Flemish.

Five out of the first ten transformation rules indicate
a transition from a tense vowel into a lax vowel in
a certain triggering environment. A closer look at
the top ten C5.0 production rules shows that seven
rules describe this transition from a Celex tense vowel
to a Fonilex lax vowel. An example is the word
“multipliceer” (Eng.: “multiply”) which is transcribed
as /m0lti:pli:se:r/ in Celex and as /m0ltIplIse:r/ in
Fonilex. The change of the second /i:/ into a /I/ is
described in the following transformation rule: “/i:/
changes into /I/ if the NEXT 1 OR 2 OR 3 PHON is
an /e:/. The corresponding C5.0 rule describing this
phenomenon is the following:

(7758/623, lift 75.4)
f = i:
f+1 in {m, b, t, k, G, f, n, v, d, p, s, Þ, g}
f+2 in {m, O, t, r, k, y, A, f, i:, e:, n, (...)}
-> class I [0.920]

These rules, describing the differences between Dutch
and Flemish consonants and vowels also make linguis-
tic sense. Linguistic literature, such as (Booij, 1995)
indicates tendencies such as voicing and devoicing on
the consonant level and the confusion of tense and lax
vowels as important differences between Dutch and
Flemish. The same discrepancies are found in the
transcriptions made by Flemish subjects in the Dutch
transcription experiments described in Gillis (1999).

5. Conclusion and Future Work

The development of accurate and understandable an-
notation tools is of prime importance in current Nat-
ural Language Processing research, which is based to
a large extent on the development of reliable corpora.
We discussed the task of phonemic annotation in such
a large-scale corpus development project. We were
able to show that for this text-to-pronunciation task,
machine learning techniques provide an excellent ap-
proach to bootstrapping the annotation and modeling
the linguistic knowledge involved. We do not know of
any approach based on hand-crafting with similar or
better accuracy for grapheme-to-phoneme conversion
for Dutch.

We were both interested in optimal accuracy and in
obtaining increased insight into the linguistic regular-
ities involved. We have empirically examined whether
combination of different systems (in this case classi-
fiers trained on different variants of Dutch) enables us
to raise the performance ceiling which can be observed
when using data driven systems. A comparison of the
results of training single classifiers and the use of a
meta-classifier indeed indicates a significant decrease



in error of 31% Dutch and 38% for Flemish. Going
one step further, namely combining the combination
classifiers results in an additional error decrease of 5%
for both Flemish and Dutch.

The use of rule induction techniques to predict one
variant on the basis of the phonemic transcription of
the other variant, on the other hand, generates more
generalisation errors. However, This rule induction
process leads to an increased insight into the system-
atic differences between both variants of Dutch.

In the text-to-pronunciation task, described in this
study, disambiguation in context is required, which is
also the case for other problems in language process-
ing, such as tagging and chunking. Therefore, we plan
to explore whether combining classifiers and combin-
ing combined classifiers can lead to accuracy boosts for
these other NLP problems as well. We will also inves-
tigate other methods that have proved to be promising
combination methods for our task (e.g. Naive Bayes).
A possible limitation of the current approach may be
that different tasks can only be combined when they
are very similar (in this case pronunciation prediction
of two related dialects), a situation which may be rare.
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