6 research outputs found

    Identification of a variant in apob gene as a major cause of hypobetalipoproteinemia in lebanese families

    No full text
    International audienceFamilial hypobetalipoproteinemia (FHBL) is a codominant genetic disorder characterized by reduced plasma levels of low-density lipoprotein cholesterol and apolipoprotein B. To our knowl-edge, no study on FHBL in Lebanon and the Middle East region has been reported. Therefore, we conducted genetic studies in unrelated families and probands of Lebanese origin presenting with FHBL, in order to identify the causes of this disease. We found that 71% of the recruited probands and their affected relatives were heterozygous for the p.(Arg490Trp) variant in the APOB gene. Haplotype analysis showed that these patients presented the same mutant haplotype. Moreover, there was a decrease in plasma levels of PCSK9 in affected individuals compared to the non-affected and a significant positive correlation between circulating PCSK9 and ApoB levels in all studied probands and their family members. Some of the p.(Arg490Trp) carriers suffered from diabetes, hepatic steatosis or neurological problems. In conclusion, the p.(Arg490Trp) pathogenic variant seems a cause of FHBL in patients from Lebanese origin, accounting for approximately 70% of the probands with FHBL presumably as a result of a founder mutation in Lebanon. This study is crucial to guide the early diagnosis, management and prevention of the associated complications of this disease

    Carbon footprint assessment of a wood multi-residential building considering biogenic carbon

    Get PDF
    Wood and other bio-based building materials are often perceived as a good choice from a climate mitigation perspective. This article compares the life cycle assessment of the same multi-residential building from the perspective of 16 countries participating in the international project Annex 72 of the International Energy Agency to determine the effects of different datasets and methods of accounting for biogenic carbon in wood construction. Three assessment methods are herein considered: two recognized in the standards (the so-called 0/0 method and −1/+1 method) and a variation of the latter (−1/+1* method) used in Australia, Canada, France, and New Zealand. The 0/0 method considers neither fixation in the production stage nor releases of biogenic carbon at the end of a wood product's life. In contrast, the −1/+1 method accounts for the fixation of biogenic carbon in the production stage and its release in the end-of-life stage, irrespective of the disposal scenario (recycling, incineration or landfill). The −1/+1 method assumes that landfills offer only a temporary sequestration of carbon. In the −1/+1* variation, landfills and recycling are considered a partly permanent sequestration of biogenic carbon and thus fewer emissions are accounted for in the end-of-life stage. We examine the variability of the calculated life cycle-based greenhouse gas emissions calculated for a case study building by each participating country, within the same assessment method and across the methods. The results vary substantially. The main reasons for deviations are whether or not landfills and recycling are considered a partly permanent sequestration of biogenic carbon and a mismatch in the biogenic carbon balance. Our findings support the need for further research and to develop practical guidelines to harmonize life cycle assessment methods of buildings with bio-based materials

    Carbon footprint assessment of a wood multi-residential building considering biogenic carbon

    No full text
    Wood and other bio-based building materials are often perceived as a good choice from a climate mitigation perspective. This article compares the life cycle assessment of the same multi-residential building from the perspective of 16 countries participating in the international project Annex 72 of the International Energy Agency to determine the effects of different datasets and methods of accounting for biogenic carbon in wood construction. Three assessment methods are herein considered: two recognized in the standards (the so-called 0/0 method and −1/+1 method) and a variation of the latter (−1/+1* method) used in Australia, Canada, France, and New Zealand. The 0/0 method considers neither fixation in the production stage nor releases of biogenic carbon at the end of a wood product's life. In contrast, the −1/+1 method accounts for the fixation of biogenic carbon in the production stage and its release in the end-of-life stage, irrespective of the disposal scenario (recycling, incineration or landfill). The −1/+1 method assumes that landfills offer only a temporary sequestration of carbon. In the −1/+1* variation, landfills and recycling are considered a partly permanent sequestration of biogenic carbon and thus fewer emissions are accounted for in the end-of-life stage. We examine the variability of the calculated life cycle-based greenhouse gas emissions calculated for a case study building by each participating country, within the same assessment method and across the methods. The results vary substantially. The main reasons for deviations are whether or not landfills and recycling are considered a partly permanent sequestration of biogenic carbon and a mismatch in the biogenic carbon balance. Our findings support the need for further research and to develop practical guidelines to harmonize life cycle assessment methods of buildings with bio-based materials.This publication has received funding from the Swiss Federal Office of Energy (grant number SI/501549-01); the European Union’s Interreg 2 Seas 2014–2020 Programme under grant number 2S05-036 CBCI; the French Agency for Ecological Transition (ADEME); in Germany, from Project Management Organisation Jülich (Projekttr¨ ager Jülich: PtJ) and the German Federal Ministry for Economic Affairs and Energy (Bundesministerium für Wirtschaft und Energie: BMWi) (grant number 03ET1550A); the Danish Energy Agency under the Energy Technology Development and Demonstration Programme (grant 64012-0133 and 64020-2119);in Austrian by the Austrian Ministry for Transport, Innovation and Technology (BMVIT) via IEA Research Cooperation via the Austrian Research Promotion Agency (FFG) Grant #864142; the Czech Ministry of Education, Youth and Sports within and within project Interexcellence No. LTT19022; Natural Resources Canada and Quebec Wood Export Bureau (QWEB)

    2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD.

    Get PDF
    Guideline
    corecore