287 research outputs found

    Parity nonconservation in heavy atoms: The radiative correction enhanced by the strong electric field of the nucleus

    Full text link
    Parity nonconservation due to the nuclear weak charge is considered. We demonstrate that the radiative corrections to this effect due to the vacuum fluctuations of the characteristic size larger than the nuclear radius r0r_0 and smaller than the electron Compton wave-length λC\lambda_C are enhanced because of the strong electric field of the nucleus. The parameter that allows one to classify the corrections is the large logarithm ln⁥(λC/r0)\ln(\lambda_C/r_0). The vacuum polarization contribution is enhanced by the second power of the logarithm. Although the self-energy and the vertex corrections do not vanish, they contain only the first power of the logarithm. The value of the radiative correction is 0.4% for Cs and 0.9% for Tl, Pb, and Bi. We discuss also how the correction affects the interpretation of the experimental data on parity nonconservation in atoms.Comment: 4 pages, 3 figures, RevTe

    Effects of T- and P-odd weak nucleon interaction in nuclei: renormalizations due to residual strong interaction, matrix elements between compound states and their correlations with P-violating matrix elements

    Full text link
    Manifestations of P-,T-odd weak interaction between nucleons in nucleus are considered. Renormalization of this interaction due to residual strong interaction is studied. Mean squared matrix elements of P-,T-odd weak interaction between compound states are calculated. Correlators between P-,T-odd and P-odd, T-even weak interaction matrix elements between compound states are considered and estimates for these quantities are obtained.Comment: Submitted to Phys. Rev. C; 21 pages, REVTEX 3, no figure

    Enhanced T-odd P-odd Electromagnetic Moments in Reflection Asymmetric Nuclei

    Get PDF
    Collective P- and T- odd moments produced by parity and time invariance violating forces in reflection asymmetric nuclei are considered. The enhanced collective Schiff, electric dipole and octupole moments appear due to the mixing of rotational levels of opposite parity. These moments can exceed single-particle moments by more than two orders of magnitude. The enhancement is due to the collective nature of the intrinsic moments and the small energy separation between members of parity doublets. In turn these nuclear moments induce enhanced T- and P- odd effects in atoms and molecules. First a simple estimate is given and then a detailed theoretical treatment of the collective T-, P- odd electric moments in reflection asymmetric, odd-mass nuclei is presented and various corrections evaluated. Calculations are performed for octupole deformed long-lived odd-mass isotopes of Rn, Fr, Ra, Ac and Pa and the corresponding atoms. Experiments with such atoms may improve substantially the limits on time reversal violation.Comment: 28 pages, Revte

    The anapole moment and nucleon weak interactions

    Get PDF
    From the recent measurement of parity nonconservation (PNC) in the Cs atom we have extracted the constant of the nuclear spin dependent electron-nucleon PNC interaction, Îș=0.442(63)\kappa = 0.442 (63); the anapole moment constant, Îșa=0.364(62)\kappa_a = 0.364 (62); the strength of the PNC proton-nucleus potential, gp=7.3±1.2(exp.)±1.5(theor.)g_p = 7.3 \pm 1.2 (exp.) \pm 1.5 (theor.); the π\pi-meson-nucleon interaction constant, fÏ€â‰Ąhπ1=[9.5±2.1(exp.)±3.5(theor.)]×10−7f_\pi \equiv h_\pi^{1} = [9.5 \pm 2.1 (exp.) \pm 3.5 (theor.)] \times 10^{-7}; and the strength of the neutron-nucleus potential, gn=−1.7±0.8(exp.)±1.3(theor.)g_n = -1.7 \pm 0.8 (exp.) \pm 1.3 (theor.).Comment: Uses RevTex, 12 pages. We have added an explanation of the effect of finite nuclear siz

    Nuclear Octupole Correlations and the Enhancement of Atomic Time-Reversal Violation

    Get PDF
    We examine the time-reversal-violating nuclear ``Schiff moment'' that induces electric dipole moments in atoms. After presenting a self-contained derivation of the form of the Schiff operator, we show that the distribution of Schiff strength, an important ingredient in the ground-state Schiff moment, is very different from the electric-dipole-strength distribution, with the Schiff moment receiving no strength from the giant dipole resonance in the Goldhaber-Teller model. We then present shell-model calculations in light nuclei that confirm the negligible role of the dipole resonance and show the Schiff strength to be strongly correlated with low-lying octupole strength. Next, we turn to heavy nuclei, examining recent arguments for the strong enhancement of Schiff moments in octupole-deformed nuclei over that of 199Hg, for example. We concur that there is a significant enhancement while pointing to effects neglected in previous work (both in the octupole-deformed nuclides and 199Hg) that may reduce it somewhat, and emphasizing the need for microscopic calculations to resolve the issue. Finally, we show that static octupole deformation is not essential for the development of collective Schiff moments; nuclei with strong octupole vibrations have them as well, and some could be exploited by experiment.Comment: 25 pages, 4 figures embedded in tex

    The embedding method beyond the single-channel case: Two-mode and Hubbard chains

    Full text link
    We investigate the relationship between persistent currents in multi-channel rings containing an embedded scatterer and the conductance through the same scatterer attached to leads. The case of two uncoupled channels corresponds to a Hubbard chain, for which the one-dimensional embedding method is readily generalized. Various tests are carried out to validate this new procedure, and the conductance of short one-dimensional Hubbard chains attached to perfect leads is computed for different system sizes and interaction strengths. In the case of two coupled channels the conductance can be obtained from a statistical analysis of the persistent current or by reducing the multi-channel scattering problem to several single-channel setups.Comment: 14 pages, 13 figures, submitted for publicatio

    Critical properties of the Fermi-Bose Kondo and pseudogap Kondo models: Renormalized perturbation theory

    Full text link
    Magnetic impurities coupled to both fermionic and bosonic baths or to a fermionic bath with pseudogap density of states, described by the Fermi-Bose Kondo and pseudogap Kondo models, display non-trivial intermediate coupling fixed points associated with critical local-moment fluctuations and local non-Fermi liquid behavior. Based on renormalization group together with a renormalized perturbation expansion around the free-impurity limit, we calculate various impurity properties in the vicinity of those intermediate-coupling fixed points. In particular, we compute the conduction electron T matrix, the impurity susceptibility, and the residual impurity entropy, and relate our findings to certain scenarios of local quantum criticality in strongly correlated lattice models.Comment: 16 pages, 5 figs; (v2) large-N results for entropy of Bose-Kondo model added; (v3) final version as publishe

    Measurement of W Polarisation at LEP

    Get PDF
    The three different helicity states of W bosons produced in the reaction e+ e- -> W+ W- -> l nu q q~ at LEP are studied using leptonic and hadronic W decays. Data at centre-of-mass energies \sqrt s = 183-209 GeV are used to measure the polarisation of W bosons, and its dependence on the W boson production angle. The fraction of longitudinally polarised W bosons is measured to be 0.218 \pm 0.027 \pm 0.016 where the first uncertainty is statistical and the second systematic, in agreement with the Standard Model expectation

    Search for Anomalous Couplings in the Higgs Sector at LEP

    Get PDF
    Anomalous couplings of the Higgs boson are searched for through the processes e^+ e^- -> H gamma, e^+ e^- -> e^+ e^- H and e^+ e^- -> HZ. The mass range 70 GeV < m_H < 190 GeV is explored using 602 pb^-1 of integrated luminosity collected with the L3 detector at LEP at centre-of-mass energies sqrt(s)=189-209 GeV. The Higgs decay channels H -> ffbar, H -> gamma gamma, H -> Z\gamma and H -> WW^(*) are considered and no evidence is found for anomalous Higgs production or decay. Limits on the anomalous couplings d, db, Delta(g1z), Delta(kappa_gamma) and xi^2 are derived as well as limits on the H -> gamma gamma and H -> Z gamma decay rates

    Measurement of W Polarisation at LEP

    Get PDF
    The three different helicity states of W bosons produced in the reaction e+ e- -> W+ W- -> l nu q q~ at LEP are studied using leptonic and hadronic W decays. Data at centre-of-mass energies \sqrt s = 183-209 GeV are used to measure the polarisation of W bosons, and its dependence on the W boson production angle. The fraction of longitudinally polarised W bosons is measured to be 0.218 \pm 0.027 \pm 0.016 where the first uncertainty is statistical and the second systematic, in agreement with the Standard Model expectation
    • 

    corecore