We examine the time-reversal-violating nuclear ``Schiff moment'' that induces
electric dipole moments in atoms. After presenting a self-contained derivation
of the form of the Schiff operator, we show that the distribution of Schiff
strength, an important ingredient in the ground-state Schiff moment, is very
different from the electric-dipole-strength distribution, with the Schiff
moment receiving no strength from the giant dipole resonance in the
Goldhaber-Teller model. We then present shell-model calculations in light
nuclei that confirm the negligible role of the dipole resonance and show the
Schiff strength to be strongly correlated with low-lying octupole strength.
Next, we turn to heavy nuclei, examining recent arguments for the strong
enhancement of Schiff moments in octupole-deformed nuclei over that of 199Hg,
for example. We concur that there is a significant enhancement while pointing
to effects neglected in previous work (both in the octupole-deformed nuclides
and 199Hg) that may reduce it somewhat, and emphasizing the need for
microscopic calculations to resolve the issue. Finally, we show that static
octupole deformation is not essential for the development of collective Schiff
moments; nuclei with strong octupole vibrations have them as well, and some
could be exploited by experiment.Comment: 25 pages, 4 figures embedded in tex