267 research outputs found

    Collective dissolution of microbubbles

    Get PDF
    © 2018 American Physical Society. A microscopic bubble of soluble gas always dissolves in finite time in an undersaturated fluid. This diffusive process is driven by the difference between the gas concentration near the bubble, whose value is governed by the internal pressure through Henry's law, and the concentration in the far field. The presence of neighboring bubbles can significantly slow down this process by increasing the effective background concentration and reducing the diffusing flux of dissolved gas experienced by each bubble. We develop theoretical modeling of such diffusive shielding process in the case of small microbubbles whose internal pressure is dominated by Laplace pressure. We first use an exact semianalytical solution to capture the case of two bubbles and analyze in detail the shielding effect as a function of the distance between the bubbles and their size ratio. While we also solve exactly for the Stokes flow around the bubble, we show that hydrodynamic effects are mostly negligible except in the case of almost-touching bubbles. In order to tackle the case of multiple bubbles, we then derive and validate two analytical approximate yet generic frameworks, first using the method of reflections and then by proposing a self-consistent continuum description. Using both modeling frameworks, we examine the dissolution of regular one-, two-, and three-dimensional bubble lattices. Bubbles located at the edge of the lattices dissolve first, while innermost bubbles benefit from the diffusive shielding effect, leading to the inward propagation of a dissolution front within the lattice. We show that diffusive shielding leads to severalfold increases in the dissolution time, which grows logarithmically with the number of bubbles in one-dimensional lattices and algebraically in two and three dimensions, scaling respectively as its square root and 2/3 power. We further illustrate the sensitivity of the dissolution patterns to initial fluctuations in bubble size or arrangement in the case of large and dense lattices, as well as nonintuitive oscillatory effects

    Viscous growth and rebound of a bubble near a rigid surface

    Get PDF
    Motivated by the dynamics of microbubbles near catalytic surfaces in bubble-powered microrockets, we consider theoretically the growth of a free spherical bubble near a flat no-slip surface in a Stokes flow. The flow at the bubble surface is characterised by a constant slip length allowing us to tune the hydrodynamic mobility of its surface and tackle in one formulation both clean and contaminated bubbles as well as rigid shells. Starting with a bubble of infinitesimal size, the fluid flow and hydrodynamic forces on the growing bubble are obtained analytically. We demonstrate that, depending on the value of the bubble slip length relative to the initial distance to the wall, the bubble will either monotonically drain the fluid separating it from the wall, which will exponentially thin, or it will bounce off the surface once before eventually draining the thin film. Clean bubbles are shown to be a singular limit which always monotonically get repelled from the surface. The bouncing events for bubbles with finite slip lengths are further analysed in detail in the lubrication limit. In particular, we identify the origin of the reversal of the hydrodynamic force direction as due to the change in the flow pattern in the film between the bubble and the surface and to the associated lubrication pressure. Last, the final drainage dynamics of the film is observed to follow a universal algebraic scaling for all finite slip lengths.ER

    Geometric tuning of self-propulsion for Janus catalytic particles

    Get PDF
    Catalytic swimmers have attracted much attention as alternatives to biological systems for examining collective microscopic dynamics and the response to physico-chemical signals. Yet, understanding and predicting even the most fundamental characteristics of their individual propulsion still raises important challenges. While chemical asymmetry is widely recognized as the cornerstone of catalytic propulsion, different experimental studies have reported that particles with identical chemical properties may propel in opposite directions. Here, we show that, beyond its chemical properties, the detailed shape of a catalytic swimmer plays an essential role in determining its direction of motion, demonstrating the compatibility of the classical theoretical framework with experimental observations.This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreements 714027 (S.M.) and 682754 (E.L.)

    Phoretic flow induced by asymmetric confinement

    Get PDF
    Internal phoretic flows due to the interactions of solid boundaries with local chemical gradients may be created using chemical patterning. Alternatively, we demonstrate here that internal flows might also be induced by geometric asymmetries of chemically homogeneous surfaces. We characterise the circulatory flow created in a cavity enclosed between two eccentric cylindrical walls of uniform chemical activity. Local gradients of the diffusing solute induce a slip flow along the surface of the cylinders, leading to a circulatory bulk flow pattern which can be solved analytically in the diffusive limit. The flow strength can be controlled by adjusting the relative positions of the cylinders, and an optimal configuration is identified. These results provide a model system for tunable phoretic pumps.This work was funded in part by a David Crighton Fellowship at the University of Cambridge (ML), a Mobility Plus Fellowship from the Polish Ministry of Science and Higher Education (ML), the EU through a Marie-Curie CIG grant (EL) and the French Ministry of Defense DGA (SM).This is the author accepted manuscript. The final version is available from Cambridge University Press via http://dx.doi.org/10.1017/jfm.2016.40

    Spin-exchange effects in elastic electron scattering from linear triatomic radicals

    Full text link
    In this work, we present a theoretical investigation on spin-exchange effects in elastic electron collisions by two linear triatomic free radicals namely, NCN and CNN. Spin-polarization differential and integral cross sections calculated in the (1-10) eV energy range are reported. For both targets, our study has shown that the exchange between the scattering and the unpaired target electrons is strongly influenced by the occurrence of shape resonances. As a consequence, significant spin-polarization fractions are only observed in the resonance region

    The long-time dynamics of two hydrodynamically-coupled swimming cells

    Get PDF
    Swimming micro-organisms such as bacteria or spermatozoa are typically found in dense suspensions, and exhibit collective modes of locomotion qualitatively different from that displayed by isolated cells. In the dilute limit where fluid-mediated interactions can be treated rigorously, the long-time hydrodynamics of a collection of cells result from interactions with many other cells, and as such typically eludes an analytical approach. Here we consider the only case where such problem can be treated rigorously analytically, namely when the cells have spatially confined trajectories, such as the spermatozoa of some marine invertebrates. We consider two spherical cells swimming, when isolated, with arbitrary circular trajectories, and derive the long-time kinematics of their relative locomotion. We show that in the dilute limit where the cells are much further away than their size, and the size of their circular motion, a separation of time scale occurs between a fast (intrinsic) swimming time, and a slow time where hydrodynamic interactions lead to change in the relative position and orientation of the swimmers. We perform a multiple-scale analysis and derive the effective dynamical system - of dimension two - describing the long-time behavior of the pair of cells. We show that the system displays one type of equilibrium, and two types of rotational equilibrium, all of which are found to be unstable. A detailed mathematical analysis of the dynamical systems further allows us to show that only two cell-cell behaviors are possible in the limit of tt\to\infty, either the cells are attracted to each other (possibly monotonically), or they are repelled (possibly monotonically as well), which we confirm with numerical computations

    Export of a Toxoplasma gondii Rhoptry Neck Protein Complex at the Host Cell Membrane to Form the Moving Junction during Invasion

    Get PDF
    One of the most conserved features of the invasion process in Apicomplexa parasites is the formation of a moving junction (MJ) between the apex of the parasite and the host cell membrane that moves along the parasite and serves as support to propel it inside the host cell. The MJ was, up to a recent period, completely unknown at the molecular level. Recently, proteins originated from two distinct post-Golgi specialised secretory organelles, the micronemes (for AMA1) and the neck of the rhoptries (for RON2/RON4/RON5 proteins), have been shown to form a complex. AMA1 and RON4 in particular, have been localised to the MJ during invasion. Using biochemical approaches, we have identified RON8 as an additional member of the complex. We also demonstrated that all RON proteins are present at the MJ during invasion. Using metabolic labelling and immunoprecipitation, we showed that RON2 and AMA1 were able to interact in the absence of the other members. We also discovered that all MJ proteins are subjected to proteolytic maturation during trafficking to their respective organelles and that they could associate as non-mature forms in vitro. Finally, whereas AMA1 has previously been shown to be inserted into the parasite membrane upon secretion, we demonstrated, using differential permeabilization and loading of RON-specific antibodies into the host cell, that the RON complex is targeted to the host cell membrane, where RON4/5/8 remain associated with the cytoplasmic face. Globally, these results point toward a model of MJ organization where the parasite would be secreting and inserting interacting components on either side of the MJ, both at the host and at its own plasma membranes

    The Clinical Variability of Maternally Inherited Diabetes and Deafness Is Associated with the Degree of Heteroplasmy in Blood Leukocytes

    Get PDF
    Context: Maternally inherited diabetes and deafness (MIDD) is a rare form of diabetes with a matrilineal transmission, sensorineural hearing loss, and macular pattern dystrophy due to an A to G transition at position 3243 of mitochondrial DNA (mtDNA) (m.3243A>G). The phenotypic heterogeneity of MIDD may be the consequence of different levels of mutated mtDNA among mitochondria in a given tissue. Objective: The aim of the present study was thus to ascertain the correlation between the severity of the phenotype in patients with MIDD and the level of heteroplasmy in the blood leukocytes. Participants: The GEDIAM prospective multicenter register was initiated in 1995. Eighty-nine Europid patients from this register, with MIDD and the mtDNA 3243A>G mutation, were included. Patients with MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes) or with mitochondrial diabetes related to other mutations or to deletions of mtDNA were excluded. Results: A significant negative correlation was found between levels of heteroplasmy and age of the patients at the time of sampling for molecular analysis, age at the diagnosis of diabetes, and body mass index. After adjustment for age at sampling for molecular study and gender, the correlation between heteroplasmy levels and age at the diagnosis of diabetes was no more significant. The two other correlations remained significant. A significant positive correlation between levels of heteroplasmy and HbA1c was also found and remained significant after adjustment for age at molecular sampling and gender. Conclusions: These results support the hypothesis that heteroplasmy levels are at least one of the determinants of the severity of the phenotype in MIDD. Heteroplasmy levels are at least one of the determinants of the severity of the phenotype of maternally inherited diabetes and deafness

    Global Perspectives on Immunization During Pregnancy and Priorities for Future Research and Development: An International Consensus Statement

    Get PDF
    Immunization during pregnancy has been recommended in an increasing number of countries. The aim of this strategy is to protect pregnant women and infants from severe infectious disease, morbidity and mortality and is currently limited to tetanus, inactivated influenza, and pertussis-containing vaccines. There have been recent advancements in the development of vaccines designed primarily for use in pregnant women (respiratory syncytial virus and group B Streptococcus vaccines). Although there is increasing evidence to support vaccination in pregnancy, important gaps in knowledge still exist and need to be addressed by future studies. This collaborative consensus paper provides a review of the current literature on immunization during pregnancy and highlights the gaps in knowledge and a consensus of priorities for future research initiatives, in order to optimize protection for both the mother and the infant
    corecore