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Abstract Swimming microorganisms such as bacteria or spermatozoa are typically found
in dense suspensions, and exhibit collective modes of locomotion qualitatively different
from that displayed by isolated cells. In the dilute limit where fluid-mediated interactions
can be treated rigorously, the long-time hydrodynamics of a collection of cells result from
interactions with many other cells, and as such typically eludes an analytical approach.
Here, we consider the only case where such problem can be treated rigorously analyti-
cally, namely when the cells have spatially confined trajectories, such as the spermatozoa
of some marine invertebrates. We consider two spherical cells swimming, when isolated,
with arbitrary circular trajectories, and derive the long-time kinematics of their relative
locomotion. We show that in the dilute limit where the cells are much further away than
their size, and the size of their circular motion, a separation of time scale occurs between
a fast (intrinsic) swimming time, and a slow time where hydrodynamic interactions lead
to change in the relative position and orientation of the swimmers. We perform a multiple-
scale analysis and derive the effective dynamical system—of dimension two—describing
the long-time behavior of the pair of cells. We show that the system displays one type of
equilibrium, and two types of rotational equilibrium, all of which are found to be unsta-
ble. A detailed mathematical analysis of the dynamical systems further allows us to show
that only two cell-cell behaviors are possible in the limit of t — oo, either the cells are
attracted to each other (possibly monotonically), or they are repelled (possibly monotoni-
cally as well), which we confirm with numerical computations. Our analysis shows there-
fore that, even in the dilute limit, hydrodynamic interactions lead to new modes of cell-cell
locomotion.
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1. Introduction

Microorganisms such as bacteria and simple eukaryotes are found in nature in a variety of
environments, from large water masses (ocean, lakes, rivers) to the fluid components of
plants and animals. In all, they represent half of the world’s biomass, and have therefore
major biological consequences on the health and survival of most other organisms.

When a microorganism has the ability to swim in a viscous fluid, then its motion is
the complicated result of the local transport by the moving fluid it resides in, and of
its intrinsic swimming. Given the small size, ¢, of these microorganisms (typically ¢ ~
1-10 ym) and the small swimming velocities, V (typically V ~ 10 — 100 um/s), the
Reynolds number, Re = V£ /v, is much smaller than 1 (here v is the kinematic viscosity
of the fluid). For such swimmers, the interactions with the surrounding fluid are therefore
dominated by viscous stresses, and inertial effects are negligible (Lighthill, 1975). As
a result, the velocity and pressure fields around the swimmer satisfy Stokes’ equations
(Happel and Brenner, 1965; Kim and Karilla, 1991).

Most classical work on the dynamics of swimming cells considered the mechan-
ics and physics of individual organisms (Lighthill, 1976; Brennen and Winet, 1977,
Blum and Hines, 1979; Childress, 1981; Lauga and Powers, 2009; Bray, 2000). However,
cells are typically found in large dense suspensions, and display collective modes of loco-
motion which are qualitatively different from that of individual cells. For example, sper-
matozoa populations can be as large as millions, and in some species display aggregation
and cooperative locomotion. Such is the case for wood mouse spermatozoa (Moore et al.,
2002), as well as opossum (Moore and Taggart, 1995), and fishfly (Hayashi, 1998). Con-
centrated bacterial suspensions display large-scale coherent and intermittent collective
swimming, with length and velocity scales much larger than that of a single cell (Mendel-
son et al., 1999; Dombrowski et al., 2004; Sokolov et al., 2007; Cisneros et al., 2007),
and resulting in an enhanced diffusion of suspended particles (Wu and Libchaber, 2000;
Kim and Breuer, 2004).

Significant work has been devoted to the theoretical modeling of collective effects in
cell locomotion. Building on early work showing that dipole-dipole hydrodynamic in-
teractions between swimming cells lead to aggregation (Guell et al., 1988), two distinct
approaches have been considered. On one hand, continuum studies have been proposed
in the dilute limit. Classical work on bioconvection neglected the presence of swimming
cells altogether (Childress et al., 1975; Pedley and Kessler, 1992; Hill and Pedley, 2005).
When the swimmer size is small compared to the typical interswimmer distance, the first
effect of a self-propelled microorganism is to modify the local stresses in the flow by creat-
ing a local dipolar (or stresslet) forcing on the surrounding fluid (Batchelor, 1970). Within
this framework, studies have discovered long-wavelength hydrodynamic instabilities oc-
curring in suspensions of self-propelled bodies (Simha and Ramaswamy, 2002; Saintillan
and Shelley, 2008). The resulting nonlinear state, sometimes referred to as “bacterial tur-
bulence” has also been reproduced using continuum simulations (Aranson et al., 2007;
Wolgemuth, 2008). On the other hand, a number of studies have focused on the discrete
nature of the “N-swimming body” problem, and solved numerically for the dynamics of
each self-propelled body. Models of increasing complexity have represented the swimmer
as a point-dipole (Hernandez-Ortiz et al., 2005; Underhill et al., 2008), a line distribution
of surface stress (Saintillan and Shelley, 2007), or a surface distribution of tangential
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velocity (Ishikawa and Pedley, 2007a, 2007b, 2008), and have reproduced some of the in-
stabilities, diffusive behavior, and nonlinear dynamics observed experimentally (see also
Mehandia and Nott, 2008). The subtle role of hydrodynamic interactions in allowing for
new modes of locomotion was also recently pointed out (Alexander and Yeomans, 2008;
Lauga and Bartolo, 2008). In parallel, work in the physics community has discovered
phase-transitions to collective motion in kinematics models of large populations of self-
propelled bodies without the need for hydrodynamic interactions (Vicsek et al., 1995;
Czirok et al., 1997; Gregoire and Chate, 2004).

From a theoretical standpoint, collective locomotion is a difficult problem. To be
treated satisfactorily, the motion of N > 1 identical swimmers should be integrated in
time. In the dense limit, no simple model is available to correctly describe the inter-
play between hydrodynamic and steric (excluded-volume) interactions. One simplifica-
tion is to consider the dilute limit, in which hydrodynamic interactions can be described
by dipole-dipole interactions, and steric interactions can be neglected. However in this
limit, hydrodynamic interactions are weak, and an order-one change in the trajectory of
a straight-swimming body can only result from a large number of successive interactions
with different swimmers. In other words, even in the dilute limit, one needs in general to
study N > 1 cells to quantitatively capture their coupled dynamics.

In this paper, we consider the only situation in which the case of N =2 swimmers can
give rise to order-one changes in the long-time limit of their positions and orientations
even in the dilute limit, namely when the individual swimmers have spatially confined
intrinsic trajectories. In that case, even small hydrodynamic interaction can accumulate
over times long compared to an intrinsic swimming time, and lead to nontrivial nonlinear
dynamics of the coupled system. By studying in the long-time limit one of these proto-
typical situations, we hope to obtain important physical and mathematical insight on the
general behavior of larger populations.

We focus our study on the particular situation where the intrinsic motion of the micro-
organisms is circular. This is the case, for example, for sea urchin spermatozoa (Riedel
et al., 2005), or other marine invertebrates (Goldstein, 1977). We consider two identical
but arbitrary model cells, and assume they are widely separated. This assumption allows
us to propose a simple general representation of cell-cell hydrodynamic interactions in
Section 2. We then show that a separation of time scales occurs, with a short time repre-
senting the intrinsic swimming time for each cell, and the long time being the time one has
to wait for repeated hydrodynamic interactions to lead to order-one changes in the swim-
mers trajectories. This separation of time scales allows us to perform a multiple-scale
analysis of the coupled dynamics in Section 3. The equilibrium configurations of the two
cells, as well as their stability, are studied in Section 4. The time-averaged equations are
reduced to a two-dimensional dynamical system whose behavior is analyzed in detail. In
particular, we show that only two long-time behaviors can arise, as determined solely by
the initial relative orientations of the swimmers: Either hydrodynamic interactions have
a net repulsive effect and the swimmers eventually swim infinitely far away from each
other, or they have a net attractive effect, and lead to collisions (or aggregation) of the two
swimmers. Any relative equilibrium or limit cycle is found to be unstable, and we there-
fore do not observe any organization of the swimmers’ motion through hydrodynamic
interactions. Our modeling assumptions, some possible extensions, and the relevance to
biological locomotion are discussed in Section 5.
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2. Equations of motion of two Stokesian swimmers
2.1. Intrinsic motion

We first consider an isolated swimmer, whose intrinsic motion is the superposition of a
translation, Upe, and a rotation, §2y€’, where e and €’ are two directions rigidly attached
to the swimmer. We neglect here the shape changes of the swimmer, assuming the swim-
ming motion is generated by surface displacements that are small compared to the general
dimensions of the swimmer. This is the case, for example, for a so-called squirmer with
tangential displacements for which the shape is at all time a sphere of constant radius
(Ishikawa et al., 2006; Ishikawa and Pedley, 2007a, 2007b, 2008). The two directions e
and € are fixed in the frame attached to the swimmer and their relative orientation is in-
dependent of time. In the absence of Brownian motion, the resulting equations of motion
for the model cell are given by

d d de’
T Uge, =20 xe, -

! 1
dr dr dr M

Considering only the nontrivial case where U # 0, three situations can be considered:

— £2¢ = 0: If isolated, the swimmer keeps a fixed orientation and swims along a straight
line at constant speed.

— £20#0 and e - ¢ = 0: The isolated swimmer has a periodic motion along a circular
trajectory of radius U,/$2p normal to € and the period of the motion is 27 /£2y.

— General case: When 2y # 0 and e - € # 0, the swimmer trajectory is an helix (right-
handed if e - ¢ > 0, left-handed otherwise). The pitch of the helix is 2w Uy/$2y)e - €/;
the radius of the circular projection is Uy/$2¢+/1 — (e - €/)2.

In this paper, we consider the case of swimmers with circular trajectory, so thate - ¢ =0
(see illustration in Fig. 1).

2.2. Far-field velocity and vorticity field created by a general swimmer

In this work, we propose a study of hydrodynamic interactions in the far-field limit, con-
sidering only the dominant contribution to the velocity field setup by the self-propelled

er

Fig. 1 Isolated rotating swimmer in a circular trajectory. The intrinsic velocity of the swimmer is the
superposition of a translation parallel to e and a rotation along €’. Here, it is assumed that e - € = 0 which
leads to a circular trajectory of radius p = Uy/£2(. The local basis (e, ¢/, e x e') moves rigidly with the
swimmer.
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bodies. The advantage of such an approach is to avoid having to focus on one particular
geometry and gait of the swimmer considered. More detailed studies of hydrodynamic
interactions can be obtained by considering the full flow field created by a biologically
realistic self-propelled cell (Ishikawa et al., 2006, 2007; Ishikawa and Hota, 2006) or for
simplified swimmer models (Pooley et al., 2007; Gyrya et al., 2009). In the former case,
the flow field must in general be solved for numerically, while in the latter, the simplifica-
tion of the geometry and swimming stroke allows for analytical treatment.

In general, a self-propelled cell creates its intrinsic swimming velocity, U, and angular
velocity, 2, by imposing a displacement of its surface. This is the case for all well-studied
motile cells, including spermatozoa, bacteria, ciliates, and algae. We denote the swimmer
surface 4. This stroke velocity field is noted u®(s) with s the position vector as measured
from a point within or in the vicinity of the body position, and fixed in the absolute
reference frame. The absolute velocity at the boundary of the swimmer can therefore
be written

us)=U+ 2 xs+u’@s), forsed. ()

Let u(x) be the velocity field resulting from this swimming pattern and o the associated
stress field, so that f = ¢ - n is the force per unit area applied by the fluid on the swimmer’s
boundary with n the normal unit vector pointing into the fluid domain. The fluid velocity
field u at a point x outside the swimmer can be expressed using the single-layer and
double-layer potentials (Pozrikidis, 1997)

1 1
uj(X)=—8—/ﬁ(S)Gf,-(x,S)dS(S)— —/uf(S)Tijk(x,S)nk(S)dS(S), 3)
T J s 87 Js

where G; (X, s) is the Green’s function corresponding to the flow field at x generated by
a unit point force located in s, and T;j, (X, s) is the corresponding stress tensor, and where
we have used Einstein’s summation notation in Eq. (3). The tensors G;; and T;; are the
Green’s function and corresponding stress tensor for the free flow case,

r,-rj

6111y
r3’

7=, withr=x—s. )
;

Gij(x,8) = - + Tji(s,x) = —
In the far-field approximation, |x| > |s|, and expanding Eq. (3) in Taylor series, the flow
field is obtained as

aa%xm/ﬁ@mdﬂw
0k 3

oo =02 [ hwase - o
- s 8
_ T, 0) / u} (s)ni(s) dS(s) + O(a_3)’ ®

8 3 "

with a the typical size of the swimmer. From Eq. (4), we get

8G,‘j _ BGij _ 8ijrk —6ikr_,~ —(Sjkr,- + 3r,-rjrk

8Sk Brk r3

(6)

7S
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When Re = 0, the inertia of the swimmer is negligible and the total force and torque
applied by the fluid on the swimmer must vanish; therefore,

f8 f(5)dS(s) =0, ™)

and f 5 Ji(8)s; dS(s) must be a symmetric tensor. Consequently, the first term in Eq. (5)
vanishes, and only the symmetric part in i and k of dG;; /05, obtained in Eq. (6), must
be retained in Eq. (5). The second and third terms in Eq. (5) behave like 1/r? far from
the swimmer: The dominant velocity field far from the swimming body is dipolar, and
dominated by a so-called stresslet (Batchelor, 1970)

3 ireS; 3
wi(r) = ——— TiTkojk r40 i 8)
8| 1’ r3

with the stresslet tensor S given by

8ij
Sij :/sifj(s) ds — ?’ Sk fi(S) ds—M/[uf(s)n,-(s)+uf(s)n,-(s)]d5(s). )
8 8 8

Note that the definition of the stresslet obtained using the single and double layer poten-
tials is the same as the one obtained by Batchelor (1970). In the following, we will refer to
two different kinds of swimmers, pushers and pullers, by analogy to a simple case where
the swimmer can be replaced by a drag-generating center and a thrust-generating center.
In that case, all the components of p;; = f 55i fjdS are zero except pi;. For a pusher,
the thrust generating center (e.g., flagellum) is located behind the drag-generating center
(e.g., head) and p;; < 0. A puller has the opposite configuration and p;; > 0 (Lauga and
Powers, 2009) (note that f was defined as the force density from the fluid acting on the
swimmer, so a pusher acts with a force distribution on the surrounding fluid as directed
away from its body along the swimming direction, whereas a puller acts on the fluid with
a force distribution directed toward the body along the swimming direction). Finally, by
taking the curl of Eq. (8), it is straightforward to get that the vorticity field created by the
swimmer is

3 ij nS'n ¢
wi(r):_;_fu"r"rr—sf+o(i‘—4>. (10)

In this work, we will keep the stresslet tensor S general, to model arbitrary swimming
modes. Its only constraints are: (1) ST =S in order to enforce torque-free motion, and
(2) tr(S) = 0, to ensure the conservation of mass through any closed surfaced enclosing
the swimmer. In general, S depends on the orientation of the swimmer. In the following,
we assume that in a frame geometrically attached to the swimmer, the stresslet is time-
independent in intensity (eigenvalues of the tensor) and direction (eigenvectors) so that
S = R7TXR where X is the intrinsic (traceless) stresslet in the set of axes B = (e, €, e x &)
and R7 is the matrix whose columns are the coordinates of B in the absolute reference
frame 5. As the swimmer moves, R(#) depends on time but ¥ remains constant. Since R
is unitary and corresponds to a rotation in three-dimensional space, it corresponds to only
three degrees of freedom.
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In vector notations, Egs. (8)—(10) become at leading order

3 [rT-S-r 3 S‘rxr
ur)=——|——=—|r, w=——"—",
87T/J, rd 47‘[” rd (11)

S'=S,  w(S)=0.
2.3. Coupled motion of two swimmers

We now consider two identical rotating swimmers, characterized by their position r; and
their orientation defined by the two orthogonal vectors e; and e’j (j =1,2). The corre-
sponding rotation matrices R; are defined as above. The problem is nondimensionalized
using the radius p = Uy/$2y of the swimmers’ circular trajectory and their intrinsic ve-
locity Uy. The tensors S; are scaled using a particular norm A of S; (for example, the
magnitude of its largest eigenvalue)—A is an intrinsic property of X and is therefore
identical for both swimmers.

In the far-field approximation, the velocity and rotation of swimmer 1 induced by
swimmer 2 are respectively equal to the velocity and rotation rate (i.e., half the vorticity)
induced by the motion of swimmer 2 alone at the position of swimmer 1. We neglect
any higher-order term arising from the finite size of the swimmers (Kim and Karilla,
1991). Such higher order corrections correspond to a modification by the presence of
swimmer 1 of the velocity field created by swimmer 2. The nondimensional distance r
between the two swimmers must therefore satisfy r >> a/p. To restrict ourselves to the
simpler case, we also implicitly assumed that the swimmers are spherical. In the case of
a nonspherical swimmer, a correction must be added to the rotation rate even in the far-
field approximation, which physically arises from the alignment of an elongated body in
a straining (irrotational) flow (Pedley and Kessler, 1992; Lauga and Powers, 2009). The
different limitations introduced by these approximations are discussed in Section 5.2.

Using the results of the previous sections, and under the assumptions presented above,
the dimensionless equations of motion of the coupled swimmers become

d -r)7-S, (r —

ary _ e —y (ri—r)" -Sy-(r; — 1) (=), (12a)
dr [r; — 13

d —r)7.S,  (r, —

L e—y (r—r) S gl‘z r) (T —10). (12b)
dr |l‘2—I‘]|

de, ;v —1) X [Sy- (1) — 1))

- _ 12
& e+ it — o } Is (12¢)
de) _ [y@r-r) x[Sm-rl) (120
dr [r) — 1)’

de; , vy —r) X [S;-(r; —r1y)]

i 12
T e Iry — 1 } e (12¢)
de) Yy —r) X [S; - (r; —1))] ,

—_— = s 12
dr |l‘2—l‘1|5 }Xe2 ( f)
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where y = 3A /(8w up?Up). Defining r = r, — ry, the relative position of the swimmer,
and r = |r|, their relative distance, these equations can be rewritten for the relative motion
of the two coupled swimmers as

dr r’ (S, +S)-r

E:eZ_e]_y[+]rv (133.)
de; ,  yrx(S;-r) de, ,  yrx(S;-r)

E = |:e| + r75:| X er, E = |:e2 + r—s X €, (13b)
de] yrx (S;-r) , de), yr X (S;-r) ,

el ] TR - ] B (150

Defining ry = (r; + r)/2, the position of the midpoint between the two swimmers, the
global motion of the pair of swimmers is given by
drg |:)/1'T'(Sl —Sz)'l‘]r

2— =e+e —

o (14)

5
Equation (13) is a system of five vector equations for r, e;, and e/j (j = 1,2), which
is closed because the knowledge of e; and e_’j entirely determines R; and, therefore, S;.
Moreover, the equalities e; -¢; =0 and e; -e; =€’ -¢;; =1 for j = 1,2 mean that, a priori,
Egs. (13)—(14) correspond to a twelve-dimensional dynamical system. Equation (13) can
be solved first for the relative motion since it does not involve ry, and one can then obtain
the absolute displacement ry from Eq. (14).

3. Far-field interaction of two rotating swimmers

We are interested in this section in the behavior of Eq. (13) when the swimmers are far
from each other, namely, when their relative distance is much greater than the radius of
their trajectory (r >> 1). We can focus our attention to the relative motion of the swimmers
defined by r as their absolute mean displacement ry does not influence Eq. (13).

Rescaling the distance between the swimmers as r =r*/¢ with ¢ € 1 and r* = O (1),
the equations for the relative motion are obtained from Eq. (13) as (dropping the star
superscripts for clarity):

dr 3 , ,
T =c(e;—e) +c'F(r,e, e, e, ¢e), (15a)
% =€, x e +°G(r,e¢€) x e, (:;,1 =&°G(r,e,,€) x €, (15b)
% =e, x e, +&°Gy(r, e, €)) x e, dd—et/z =&°Gy(r, e, €)) x €, (15¢)
with
F(r.e;, e}, e, €)= —y[w]r, (162)
Gi(r,e;, €) = M, (16b)

7S
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yr X (S;-1)

5

Ga(r,e, €)) = ;.

(16¢)
which are at most O(1). In addition, differentiating the equations for e; in Eqs. (15b—c)
with respect to time leads to

dz i d 4 dGz
d; +e = % X €; +83|:? X €; +(G, -e[)el’. —2(8; -G,-)e,»:| +86Gi X (G, Xe,‘),

amn
since e; - €} = 0.
3.1. Multiple-scale analysis

The equations for e; in Eq. (15) suggest that in the limit of small ¢ there are two different
time scales: The short time-scale is O (1) and corresponds to the intrinsic circular motion
of the swimmers, whereas the long time scale is O(s~%) and corresponds to the motion
induced on one swimmer by the other. Using the formalism of multiple-scale analysis
(Bender and Orszag, 1978) with the assumption of scale separation arising from the far-
field approximation (¢ < 1), we now formally consider all the fields as functions of two
variables t and T = &3¢. The time derivative operator d/d¢ must then be replaced by 9/9t +
£30/97, and the different vector fields are obtained as regular perturbations series in &

r=r%4er® 4r® ... (18a)
e; (0) + Se(l) + 82e(2) + -, (18b)
¢ =e¢ 4eeV 4% ..., (18¢)

and the functions F, G; can also be expanded as power series in €, each term being com-
puted from the expansion of e; and r. Introducing this expansion in Eq. (15), we obtain
the dynamical system at successive orders, which we now solve.

At order O(1), we have

ar® 9e ¥ de”
=0 =0 o=t xe (19)

at order O (¢)

arM deV del”
== el —e”, —— =0, —a’t =e” x e +e&" xe”, (20)

at order O (g?)

/(1) /(2) (0)

ar® 9e® 5e?
— el _e 0) xel 1e@ xe®,

i _ i

= , =0, —— =g ><e(2) €
a2 dt 3t *

2D
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and at order O (&%)

or©®  9r® @
2@ @ © o0 O L0 (0
St = e FFE e e e e ),
PCREIPE 5e©@ 5@ 22)
€ € =G4(r(o) e® e/.(o)) ¢ & _
ot dt SRR dt dt

Note that we are only interested in the leading order behavior of each function. Equa-
tion (19) gives that the leading behavior of r and e; only varies with the long time scale 7.
However, it is necessary to go up to the terms of order O(e?) to obtain the T dependence
of these functions. This results from the ratio between the two time scales being O (&%)
while the first correction to r is O (¢). We note from the structure of Egs. (20)—(22) that the
t-dependence of the O(&”) term in r is determined by the previous order in the expansion
of e;. We also note that the relation between r/) and ef] D s linear.

If we now introduce the expansion from Eq. (18) into Eq. (17), we obtain
%’;ﬂﬂ;”:o, 0<j<2. (23)
This equation can be integrated in 7 as
e’ (t, 1) =a" (r) cos(r) + b (z) sin(r). (24)
If we note (.) the f-averaging operator between ¢ and ¢ + 2, we therefore obtain
(), v)=0, 0<j<2, (25)

and, therefore, (r'V) and (r'®) are functions of T only. We can now take the average of
the first equation in Eq. (22) remembering that r© is a function of T only

dr©® ,
7 (PO e, e, &) =1V, 1) —r Ve + 27, 7). (26)
T

From Egs. (19)—(21), el/.(j ) is independent of ¢ for 0 < j < 2. Therefore, we have

e x & = a9 (¢) cos(t) + B () sin(r). 27

From the definition of F and Eqgs. (24)—(27), we can write
F(r?, e, e e, e/2(0)) = A(7) cos(2t) 4+ B(t) sin(21)
+ C(7) cos(t) + D(7) sin(¢) + E(7), (28)

and the left-hand side of Eq. (26) is a function a(t) of T only. Then we have r™® (¢ +
2nm, 1) =r¥ (¢, 1) — na(r). For the perturbation expansion assumption to remain valid,
o must be equal to zero. Therefore,

dr'® _p 0 O O 0 O 29
?_< (r?. e, e[”, ey, €,”)). (29)



The Long-Time Dynamics of Two Hydrodynamically-Coupled 983

The same procedure applied to the second equation in Eq. (22) gives

d /.(0)
e+ 2m.1) — (1) =~ (G (1. ) (30)
From the definition of G;, G; (r®, e}o)) can be written in a similar form as F(r©®, e(lo), e'l(o)

ego), e/z(o)) in Eq. (28). The right-hand side of Eq. (30) is therefore a function of 7 only and

to avoid secular terms, both sides of the equation must be zero and

)

de/”
dr

=(Gi(r?, e, ¢")). 31)

j ’
At leading order, the system behaves therefore as

r=r?@) +0@), e=e"t1)+0%e), e&=¢"0)+0@E), 32

with
dr® de©
_ © @ (0 (0 /0 i v (0 a0 (0 0)
?_<F(r e el ey e))), ?_<G,(r €€ ) x e,
(33a)
del” ar®
S =el@xe” =) e (33b)

The different notations are summarized on Fig. 2, where the superscript (0) was
dropped for clarity. We note that to achieve our final result, the hypothesis e; - €, =0
was crucial: It is only because the intrinsic motion produces no net displacement over a
period that the separation of scales is possible. If it is not the case but the dot product of
these vectors is small, the intrinsic trajectory would be an helix but the net displacement
h over one period would still be small. We expect that the analysis remain valid provided
h < r, but this should be confirmed with a perturbation expansion in the helix step, which
gives a new small parameter.

1'2(7'7 t)
. eq(T,t
Swimmer 1 N 2 ()”.I
N ’
4 /
€'5(7) \ /
w AN
P
‘ Swimmer 2

Fig. 2 Multiple-scale analysis for the motion of the two swimming cells: The leading order motion is
characterized by the distance between the mean positions of the two swimmers r and the orientation of their
rotation vectors e’1 and e/z. These three vectors evolve with the slow time scale 7, while the instantaneous
position of each swimmer is the superposition of their mean and relative motion on the slow time scale t
and the circular motion on the fast time scale 7.
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Fig. 3 Notations for the computation of the average quantities (F(r, e[, e:/l ,€, e/z)) and (G;(r,e;, e/j))
over a period of the short time scale ¢ corresponding to one period of the circular motion of swimmer 1.

The vectors in black are constant over this time-scale (they depend on t) and the grey vector e evolves as
Eq. (34).

3.2. Computation of the average quantities

In this section, we compute quantities such as (F@r©, e(lo) , e/1(0) , e(zo), 6/2(0))) and
(G; (r®, ei»o), e/j(o))) with the average taken over one period of the short time-scale ¢. For
clarity of notations, we drop the (0) exponents with the understanding that we are only
considering vector fields of that order. Over this period, r and e/j are constant vectors.
Defining a unit vector i orthogonal to €] and r, the basis B, = (i, €] x i, €) is orthonormal
(Fig. 3). The instantaneous intrinsic directions corresponding to the intrinsic translation
and rotation velocities vary as

e; =costi+ sinze; x i, e x ¢; = —sinsi+ cosze; x i (34)

with no loss of generality since we can redefine the origin of time so that e; is orthogonal
toratt=0 (r-i=0). The vector r can also be decomposed in 3,

r=ri€ +re xi withri+r; =r" (35)

Then we easily obtain

e-r rp sint
R-r= e r = i . (36)
(e; x€)-r —7rpCOSt

and

2 2
(e -1?) = %2 (e 1)?)=r, (((ef xe)- r)2> %2
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(e -r)(€; 1)) =((e; - D)[(e] x &) -r])=([(€] x &) -r](e] - 1)) =0,
and, therefore,
(f"-Si-r)=(R-D"-Z-R-1))

_r22 2
= ?(211 + X33) +r Xn

2 (e -0)]tr(Z 3 ’
I e C 21‘) Jtr(%) n 222(5(‘51' 1)’ — %) (37

Finally, since tr(X) =0,

2 / 2 / 2
©) _/0) _(0) _#(0) y X [ 2rc —3[(e] - )" 4 (€} - 1)°]
(F(r?,e”, e[” . €}, €)")) = 5 [ L = 2 r. (38)

Similarly,

S, -r=[Xrsint + Xpr; — X3rpcostle;

+ [221}’2 sint + Xor; — 231 cost]e;

+ [ X5y sint 4+ Zpor) — Xarpcost](e; X €)), (39)
and
e; X r =rysinti —rjcost(e; x i) + rp coste, (40)
e X I = —ni, (41)
(¢; x €) xr=—rjcosti—rysint (e} x i) + rysinre; (42)

from which we obtain after time-averaging,

rr . sz ,  nir2 o, o,
(Si-p) ><1‘>=7(211 — 235 + X33)i+ (X3 — X3) S e xi) (43)

The last term in the previous equation is equal to zero as X is symmetric, and identifying
ry =e€; -rand r,i =r x €}, the previous equation becomes:

X
2

(Si-p xr)=—3 (€] -T)(r x €)). (44)
Therefore,

, 3y Xy(€, - r)(r x €))
(G (0, &, &) = TR S

)

(45)

, 3y Xn(e] -r)(r xe)
(Go(r?, e, €)= R
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Finally, the relative equations of motion for the slow varying fields r, €|, and e}, become
with M= )/222

e [27-3le 07+ (e 071 462)
dr 2rs

d_e/l _ 3u(e) - T)[(r x e) x e’l], (46b)
dr 2rs

de) _ 3u(e] -r)[(rxe)) xe)]

dr 25 : (46c)

The absolute motion of the swimmers can be determined on the long time scale t by
averaging (14) over the short-time scale and obtain

dro) _3p
dr 4

[(&, 1) — (¢} -r)z]r%. 47)

A comparison of the dynamical systems given by Eq. (46) and Eq. (13) shows that the
averaged equations, Eq. (46), correspond to the interaction of two stresslets of equal in-
tensity 3u/2(eje} —I/3) and 3/2(e)e, — I/3) respectively located at the mean position
of swimmers 1 and 2 with no intrinsic velocity. This suggests that a single swimmer cre-
ates an average far-field in the form of a stresslet whose intensity is 3+/2 and whose ori-
entation is entirely determined by its intrinsic rotation vector €;. This statement is proven
rigorously in Section 3.3. The intensity of the averaged stresslet is equal to 3X,, /2, where
X, is the diagonal component of the instantaneous stresslet along the direction e;. We
observe that all the other components of X disappear in the averaging process.

By analogy with the case where the instantaneous stresslet is equal to a force dipole,
resulting from the superposition of a drag force and a thrust force, we will consider in the
following two kinds of swimmers:

e Pushers with i > 0: In this case, the thrust generating center is located behind the drag
generating center; y X'} < 0 and y X5, = y Y33 > 0 with all other components equal to
zero [see Eq. (9)]. This is, for example, the case of a swimmer with a flagellum located
behind its drag-generating head, such as spermatozoa, or most flagellated bacteria.

e Pullers with u < 0: In that case, the thrust is generated in front of the drag-generating
center; y Xy > 0 and y Xy = y X33 < 0 [see Eq. (9)]. This is, for example, the case
for swimmers using their flagella in a breaststroke pattern to pull their bodies, such as
the alga Chlamydomonas.

It is important to point out here that we manage to obtain a system of equations for
e|, €, and r only, but that the position of each swimmer on its instantaneous circular tra-
jectory is not important—in particular the relative phase of these instantaneous motions.
Two conditions are necessary for this simplification to occur. First, the average flow field
created by an isolated rotating swimmer is independent of time and also independent of
the direction of motion on the circular trajectory (see the following section). This is a
consequence of the fact that the instantaneous flow field created by the swimmer does not
have any azimuthal component. The second condition is that the swimmers are spheri-
cal, and the averaged velocity induced on swimmer 2 by swimmer 1 only depends on the
properties of the averaged flow field induced by swimmer 1 and not the orientation of
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swimmer 2. This would not be the case if the swimmers were nonspherical: then the in-
duced velocity and rotation created by swimmer 1 on swimmer 2 would not only depend
on the position and trajectory of swimmer 1, but also on the orientation of swimmer 2 with
respect to the principal axes of strain of the local flow (see the discussion in Section 5.2).
For nonspherical swimmers, the averaging process is more subtle and the phase of the in-
stantaneous motions of the two swimmers does not disappear in the averaged equations;
it remains, however, a constant parameter of the problem since both swimmers have the
same intrinsic translation and rotation velocities.

3.3. Far-field averaged velocity field created by a rotating swimmer

The results of the previous section suggest that, on average, a rotating swimmer behaves
like a stresslet in the far-field. We explore this result in more detail in this section. The
behavior of the far-field velocity is of interest to characterize the rheological properties
of a suspension of such swimmers (Batchelor, 1970). In this section only, we consider
an isolated swimmer, and compute the time-averaged flow in the far field. The swimmer
trajectory is a circle oriented by its rotation vector € parallel to the vertical axis and we
choose the origin of the reference axes as the average position of this swimmer. Let us
denote by €(¢) the instantaneous position of the swimmer (|e(¢)| = 1 by our choice of
scaling) and e its velocity vector. If i is an arbitrary constant unit vector orthogonal to €',
we can define the origin of time such that

€(t) =costi+sinte’ x i, e = —sinti +coste’ xi. (48)

We are interested in the velocity field created by this swimmer at a position x far from the
origin (x > 1). The instantaneous velocity field at x is given from Eq. (11) by

R-DT-T-R-1) .
ux) =—y 3 r, withr=x —¢, (49)
r
and
e-r e-x e-€
P=R.-r= e-r = e -x - e €
(exe€e)-r (exé€)-x (exé€) €
e-x 0
= e-x —-10]. (50
(exe)-x 1

Therefore, from Eq. (48), noting once again (.) the averaging operator over a 2 -period,
we have

(Pf) = %[(X (€ x D)’ + (%] = %[x2 —(x-€)?], (51a)
(P}) = (x-¢)?, (51b)

(P) =1+ %[xz —(x-¢)7], (51c)
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(PP3) = —x- ¢, (51d)
(P1Py) = (P P5)=0. (51e)

Keeping only the dominant terms, we have on average

A+ 2y

(rT-S-r) 5

b
[~ (x-e)] + Tn(x- )P = T2 3 €) — 7] (52)
We also have

1 1 €-X 1
— = (142X 1 0( ). (53)
r’ xn X X

Since we are interested only in the dominant term in the far-field averaged behavior, we
write

(54)

5 )

<(R~l‘)T-)3-(R-r)>N (R-n"-Z-(R-1)

rd x

as all the corrections to this expression are of higher order in 1/x. Grouping all terms, we
finally obtain the far-field averaged flow

y Xy [xT - (3ee — 1) -x]x
2 x3

(u)(x) =

(55)

We recognize here the velocity field created by a steady stresslet 34/2(e’e’ —1/3) consis-
tently with the results of the previous section. Physically, the results of Eq. (55) indicate
that, for cells which behave instantaneously as pushers (pullers), the averaged flow is that
of a puller (pusher) along the axis of rotation of the circular motion.

We observe in Eq. (55) that the average flow remains identical by changing €’ into —e’:
the average flow is therefore not modified by a reversal of the circular motion (along the
same trajectory).

4. Analysis of the far-field interaction
4.1. Reduced forms of the equations

We now return to the coupled equations derived using the multiple-scale analysis. Defin-
ing the unit vector e, of the direction between swimmer 1 and swimmer 2, e, =r/|r| and
by differentiation in time, we obtain

de, 1 dr r dr
= (= ) (56)
dr  |r|dr r®* dr

But from Eq. (46), we note that dr/dt = Rr, with R a scalar function of r and e_’i. Using
this result in (56), we obtain that e, = r/|r| is a time-independent unit vector set by the ini-
tial conditions. The mean distance between the two swimmers maintain a fixed direction.
In the following, e, denotes the fixed direction between the two swimmers’ positions. The
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vectors e; are defined from e, by their polar and azimuthal angle ; and ¢;. Choosing two
constant unit vectors e, and e, so that (e,,e,,e;) is orthonormal, then

e; = sin6; cos ¢;e, + sinb; sin;e, + cos b;e;. 57

Note here, that the definition of ¢; depends on the definition of e, and e, which can be
rotated arbitrarily in the plane orthogonal to e,. Therefore, only the intrinsic & = ¢, — ¢
has a physical meaning. Then in the frame (e,,e,,e;) we have

cos 6 cos 6, sin 6 cos ¢
cos 01 cos 6, sin By sin ¢, , (58)
— cos 6 sinf; sinf, cos(¢pr — ¢P;)

(€ -r)[r x e|] x & =r?

and
de do, [ €08 0, cos ¢, P —sin 6, sin ¢,
=221 cos Oysing, | + 22| sin 6rcosgpy | . 59)
dr dr . dr
—sin6, 0

By identification, the system given by Eq. (46) can then be rewritten as a four-dimensional
dynamical system

d
dl - 2“_2[2 —3(cos?6; + cos?6,)], (60a)
T r
do 3 .
P 0, sin6, cos £, (60b)
do 3 ,
T = 33 008 6, sin6; cos £, (60c)
d 3
sin6) sin6, d—g =— 2—“3 cos B cos 6, (sin” 6 + sin> 6,) sin&, (60d)
T r

where we have used & = ¢, — ¢;. The notations for Eq. (60) are summarized on Fig. 4.
Note that Eq. (60) can be simplified even further by defining o = 2r3/3, x; = cos#; and
y =sin6; sinf, cos &, and we obtain

do
E:Z—3(x12+x§), (61a)
dx
a— = —xyy, (61b)
dr
d
a2 = —xyy, ©lc)
dr
d
otd—y :x|x2(2—x12—x22). (61d)
T

Physically, « is proportional to the third power of the distance between the swimmers. It
is negative for < O (pullers) and positive for i > 0 (pushers). From the original physical
problem, we also have the following three mathematical constraints:



990 Michelin and Lauga

Swimmer 1

Fig. 4 Definitions of the various variables for the average motion (see text for details).

e The variable « is either positive or negative. A change of sign of « requires a cancel-
lation of r at a finite time and a collision of the swimmers. Such a collision obviously
violates the far-field approximation, and the present theory is not valid when o gets
small. In the following, we will refer as “collisions” to regimes where the present the-
ory predicts a decrease of the relative distance to an arbitrary small number, at which
point additional modeling is required. We will therefore focus on solutions for which
the sign of « is fixed.

e The variables x; and x, are cosines, therefore, —1 < {x, x,} < 1.

e From the definition of y, 0 < y2 < (1 — x?)(1 — x3).

4.2. Relative equilibria and stability

We focus here on relative equilibrium positions, for which on the long time scale, the
swimmers do not move relatively to each other. There can be, however, a mutual motion
of the swimmers (d(ry)/dt # 0).

4.2.1. Equilibrium points

From (61), there is only one type of equilibrium points obtained for («, x1, X2, y) =
(a9, £4/2/3,0,0), or 