103 research outputs found
Correlating the Energetics and Atomic Motions of the Metal-Insulator Transition of M1 Vanadium Dioxide
Materials that undergo reversible metal-insulator transitions are obvious
candidates for new generations of devices. For such potential to be realised,
the underlying microscopic mechanisms of such transitions must be fully
determined. In this work we probe the correlation between the energy landscape
and electronic structure of the metal-insulator transition of vanadium dioxide
and the atomic motions occurring using first principles calculations and high
resolution X-ray diffraction. Calculations find an energy barrier between the
high and low temperature phases corresponding to contraction followed by
expansion of the distances between vanadium atoms on neighbouring sub-lattices.
X-ray diffraction reveals anisotropic strain broadening in the low temperature
structure's crystal planes, however only for those with spacings affected by
this compression/expansion. GW calculations reveal that traversing this barrier
destabilises the bonding/anti-bonding splitting of the low temperature phase.
This precise atomic description of the origin of the energy barrier separating
the two structures will facilitate more precise control over the transition
characteristics for new applications and devices.Comment: 11 Pages, 8 Figure
Computer-Assisted Proofs of Some Identities for Bessel Functions of Fractional Order
We employ computer algebra algorithms to prove a collection of identities
involving Bessel functions with half-integer orders and other special
functions. These identities appear in the famous Handbook of Mathematical
Functions, as well as in its successor, the DLMF, but their proofs were lost.
We use generating functions and symbolic summation techniques to produce new
proofs for them.Comment: Final version, some typos were corrected. 21 pages, uses svmult.cl
Beyond series expansions: mathematical structures for the susceptibility of the square lattice Ising model
We first study the properties of the Fuchsian ordinary differential equations
for the three and four-particle contributions and
of the square lattice Ising model susceptibility. An analysis of some
mathematical properties of these Fuchsian differential equations is sketched.
For instance, we study the factorization properties of the corresponding linear
differential operators, and consider the singularities of the three and
four-particle contributions and , versus the
singularities of the associated Fuchsian ordinary differential equations, which
actually exhibit new ``Landau-like'' singularities. We sketch the analysis of
the corresponding differential Galois groups. In particular we provide a
simple, but efficient, method to calculate the so-called ``connection
matrices'' (between two neighboring singularities) and deduce the singular
behaviors of and . We provide a set of comments and
speculations on the Fuchsian ordinary differential equations associated with
the -particle contributions and address the problem of the
apparent discrepancy between such a holonomic approach and some scaling results
deduced from a Painlev\'e oriented approach.Comment: 21 pages Proceedings of the Counting Complexity conferenc
Holonomic functions of several complex variables and singularities of anisotropic Ising n-fold integrals
Lattice statistical mechanics, often provides a natural (holonomic) framework
to perform singularity analysis with several complex variables that would, in a
general mathematical framework, be too complex, or could not be defined.
Considering several Picard-Fuchs systems of two-variables "above" Calabi-Yau
ODEs, associated with double hypergeometric series, we show that holonomic
functions are actually a good framework for actually finding the singular
manifolds. We, then, analyse the singular algebraic varieties of the n-fold
integrals , corresponding to the decomposition of the magnetic
susceptibility of the anisotropic square Ising model. We revisit a set of
Nickelian singularities that turns out to be a two-parameter family of elliptic
curves. We then find a first set of non-Nickelian singularities for and , that also turns out to be rational or ellipic
curves. We underline the fact that these singular curves depend on the
anisotropy of the Ising model. We address, from a birational viewpoint, the
emergence of families of elliptic curves, and of Calabi-Yau manifolds on such
problems. We discuss the accumulation of these singular curves for the
non-holonomic anisotropic full susceptibility.Comment: 36 page
Rigorous Polynomial Approximation using Taylor Models in Coq
International audienceOne of the most common and practical ways of representing a real function on machines is by using a polynomial approximation. It is then important to properly handle the error introduced by such an approximation. The purpose of this work is to offer guaranteed error bounds for a specific kind of rigorous polynomial approximation called Taylor model. We carry out this work in the Coq proof assistant, with a special focus on genericity and efficiency for our implementation. We give an abstract interface for rigorous polynomial approximations, parameter- ized by the type of coefficients and the implementation of polynomials, and we instantiate this interface to the case of Taylor models with inter- val coefficients, while providing all the machinery for computing them. We compare the performances of our implementation in Coq with those of the Sollya tool, which contains an implementation of Taylor models written in C. This is a milestone in our long-term goal of providing fully formally proved and efficient Taylor models
Effects of a peer-led Walking In ScHools intervention (the WISH study) on physical activity levels of adolescent girls: a cluster randomised pilot study.
School-based interventions may be effective at increasing levels of physical activity (PA) among adolescents; however, there is a paucity of evidence on whether walking can be successfully promoted to increase PA in this age group. This pilot study aimed to assess the effects of a 12-week school-based peer-led brisk walking programme on levels of school-time PA post intervention
The Effects of Playing with Thin Dolls on Body Image and Food Intake in Young Girls
This study experimentally tested the effects of playing with thin dolls on body image and food intake in 6- to 10-year-old Dutch girls (N = 117). Girls were randomly assigned to play with a thin doll, an average-sized doll, or Legos in a no doll control condition. After 10 min, they participated in a taste-test and completed questionnaires about body image. No differences were found between conditions for any of the body image variables. However, girls who played with the average-sized doll ate significantly more food than girls in other exposure conditions. Although no support was found for the assumption that playing with thin dolls influences body image, the dolls directly affected actual food intake in these young girls
Write, draw, show, and tell: a child-centred dual methodology to explore perceptions of out-of-school physical activity
Background
Research to increase children’s physical activity and inform intervention design has, to date, largely underrepresented children’s voices. Further, research has been limited to singular qualitative methods that overlook children’s varied linguistic ability and interaction preference. The aim of this study was to use a novel combination of qualitative techniques to explore children’s current views, experiences and perceptions of out-of-school physical activity as well as offering formative opinion about future intervention design.
Methods
Write, draw, show and tell (WDST) groups were conducted with 35 children aged 10–11 years from 7 primary schools. Data were analysed through a deductive and inductive process, firstly using the Youth Physical Activity Promotion Model as a thematic framework, and then inductively to enable emergent themes to be further explored. Pen profiles were constructed representing key emergent themes.
Results
The WDST combination of qualitative techniques generated complimentary interconnected data which both confirmed and uncovered new insights into factors relevant to children’s out-of-school physical activity. Physical activity was most frequently associated with organised sports. Fun, enjoyment, competence, and physical activity provision were all important predictors of children’s out-of-school physical activity. Paradoxically, parents served as both significant enablers (i.e. encouragement) and barriers (i.e. restricting participation) to physical activity participation. Some of these key findings would have otherwise remained hidden when compared to more traditional singular methods based approaches.
Conclusions
Parents are in a unique position to promote health promoting behaviours serving as role models, physical activity gatekeepers and choice architects. Given the strong socialising effect parents have on children’s physical activity, family-based physical activity intervention may offer a promising alternative compared to traditional school-based approaches. Parents' qualitative input is important to supplement children’s voices and inform future family-based intervention design. The WDST method developed here is an inclusive, interactive and child-centred methodology which facilitates the exploration of a wide range of topics and enhances data credibility
Mimicry of Food Intake: The Dynamic Interplay between Eating Companions
Numerous studies have shown that people adjust their intake directly to that of their eating companions; they eat more when others eat more, and less when others inhibit intake. A potential explanation for this modeling effect is that both eating companions' food intake becomes synchronized through processes of behavioral mimicry. No study, however, has tested whether behavioral mimicry can partially account for this modeling effect. To capture behavioral mimicry, real-time observations of dyads of young females having an evening meal were conducted. It was assessed whether mimicry depended on the time of the interaction and on the person who took the bite. A total of 70 young female dyads took part in the study, from which the total number of bites (N = 3,888) was used as unit of analyses. For each dyad, the total number of bites and the exact time at which each person took a bite were coded. Behavioral mimicry was operationalized as a bite taken within a fixed 5-second interval after the other person had taken a bite, whereas non-mimicked bites were defined as bites taken outside the 5-second interval. It was found that both women mimicked each other's eating behavior. They were more likely to take a bite of their meal in congruence with their eating companion rather than eating at their own pace. This behavioral mimicry was found to be more prominent at the beginning than at the end of the interaction. This study suggests that behavioral mimicry may partially account for social modeling of food intake
- …