1,224 research outputs found

    Rate statistics for radio noise from lightning

    Get PDF
    Radio frequency noise from lightning was measured at several frequencies in the HF - VHF range at the Kennedy Space Center, Florida. The data were examined to determine flashing rate statistics during periods of strong activity from nearby storms. It was found that the time between flashes is modeled reasonably well by a random variable with a lognormal distribution

    High Frequency Scattering from Arbitrarily Oriented Dielectric Disks

    Get PDF
    Calculations have been made of electromagnetic wave scattering from dielectric disks of arbitrary shape and orientation in the high frequency (physical optics) regime. The solution is obtained by approximating the fields inside the disk with the fields induced inside an identically oriented slab (i.e. infinite parallel planes) with the same thickness and dielectric properties. The fields inside the disk excite conduction and polarization currents which are used to calculate the scattered fields by integrating the radiation from these sources over the volume of the disk. This computation has been executed for observers in the far field of the disk in the case of disks with arbitrary orientation and for arbitrary polarization of the incident radiation. The results have been expressed in the form of a dyadic scattering amplitude for the disk. The results apply to disks whose diameter is large compared to wavelength and whose thickness is small compared to diameter, but the thickness need not be small compared to wavelength. Examples of the dependence of the scattering amplitude on frequency, dielectric properties of the disk and disk orientation are presented for disks of circular cross section

    Microwave properties of Nb/PdNi/Nb trilayers. Observation of flux flow in excess of Bardeen-Stephen theory

    Full text link
    We combine wideband (1-20 GHz) Corbino disk and dielectric resonator (8.2 GHz) techniques to study the microwave properties in Nb/PdNi/Nb trilayers, grown by UHV dc magnetron sputtering, composed by Nb layers of nominal thickness dSd_S=15 nm, and a ferromagnetic PdNi layer of thickness dFd_F= 1, 2, 8 and 9 nm. We focus on the vortex state. Magnetic fields up to Hc2H_{c2} were applied. The microwave resistivity at fixed H/Hc2H/H_{c2} increases with dFd_F, eventually exceeding the Bardeen Stephen flux flow value.Comment: 6 pages. Submitted to Journal of Superconductivity and Novel Magnetis

    Polaronic state and nanometer-scale phase separation in colossal magnetoresistive manganites

    Full text link
    High resolution topographic images obtained by scanning tunneling microscope in the insulating state of Pr0.68Pb0.32MnO3 single crystals showed regular stripe-like or zigzag patterns on a width scale of 0.4 - 0.5 nm confirming a high temperature polaronic state. Spectroscopic studies revealed inhomogeneous maps of zero-bias conductance with small patches of metallic clusters on length scale of 2 - 3 nm only within a narrow temperature range close to the metal-insulator transition. The results give a direct observation of polarons in the insulating state, phase separation of nanometer-scale metallic clusters in the paramagnetic metallic state, and a homogeneous ferromagnetic state

    High-Pressure Phase Diagram in the Manganites: a Two-site Model Study

    Full text link
    The pressure dependence of the Curie temperature TCT_C in manganites, recently studied over a wide pressure range, is not quantitatively accounted for by the quenching of Jahn-Teller distortions, and suggests the occurrence of a new pressure-activated localizing processes. We present a theoretical calculation of TCT_C based on a two-site double-exchange model with electron-phonon coupling interaction and direct superexchange between the t2g% t_{2g} core spins. We calculate the pressure dependence of TCT_C and compare it with the experimental phase diagram. Our results describe the experimental behavior quite well if a pressure-activated enhancement of the antiferromagnetic superexchange interaction is assumed

    Gauge factor of thick film resistors: outcomes of the variable range hopping model

    Full text link
    Despite a large amount of data and numerous theoretical proposals, the microscopic mechanism of transport in thick film resistors remains unclear. However, recent low temperature measurements point toward a possible variable range hopping mechanism of transport. Here we examine how such a mechanism affects the gauge factor of thick film resistors. We find that at sufficiently low temperatures TT, for which the resistivity follows the Mott's law R(T)exp(T0/T)1/4R(T)\sim \exp(T_0/T)^{1/4}, the gauge factor GF is proportional to (T0/T)1/4(T_0/T)^{1/4}. Moreover, the inclusion of Coulomb gap effects leads to GF(T0/T)1/2{\rm GF}\sim (T_0'/T)^{1/2} at lower temperatures. In addition, we study a simple model which generalizes the variable range hopping mechanism by taking into account the finite mean inter-grain spacing. Our results suggest a possible experimental verification of the validity of the variable range hopping in thick film resistors.Comment: 7 pages, 3 eps figures, submitted to Journal of Applied Physic
    corecore