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ABSTRACT

Calculations have been made of electromagnetic wave scattering from dielectric disks of

arbitrary shape and orientation in the high frequency (physical optics) regime. The solution is

obtained by approximating the fields inside the disk with the fields induced inside an identically
oriented slab (i.e. infinite parallel planes) with the same thickness and dielectric properties. The
fields inside the disk excite conduction and polarization currents which are used to calculate the
scattered fields by integrating the radiation from these sources over the volume of the disk. This

computation has been executed for observers in the far field of the disk in the case of disks with

arbitrary orientation and for arbitrary polarization of the incident radiation. The results have been

expressed in the form of a dyadic scattering amplitude for the disk. The results apply to disks

whose diameter is large compared to wavelength and whose thickness is small compared to diam-

eter, but the thickness need not be small compared to wavelength. Examples of the dependence of

the scattering amplitude on frequency, dielectric properties of the disk and disk orientation are

presented for disks of circular cross section.
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HIGH FREQUENCY SCATTERING FROM ARBITRARILY ORIENTED
DIELECTRIC DISKS

I. INTRODUCTION

A solution is presented for the scattering from dielectriq disks of arbitrary shape and orienta-
tion. This work was motivzied by an investigation of the effects of leaves on microwave remote
sensing of vegetation (Lang, 1981). Determining the scattering and absorption properties of a
collection of objects such as leaves requires knowledge of the scattering and absorption properties
of the individual objects, and in this work the dielectric disk was adopted as a first order model for
leaves. The disk is also of interest as a model to study the scattering and absorption from other

particles such as ice crystals in clouds.

Although much work has been done on scattering from perfectly conducting disks (Meixner
and Andrejewski, 1950; Andrejewski, 1952; Hodge, 1980; Ruck et. al., 1970), very little has been
done on scattering from dielectric dis'.: and disks with non-circular cross section (Ruck, et. al,,
1970; Bowman et. al,, 1969). Howc .+, ¥.iere has been recent work applicable to thin dielectric
disks. Weil and Chu (1976a-b) developed a numerical approximation for the resonant region valid
for thin circular disks. This was done by choosing a set of basisfunctions apropos of a thin circular
disk and then using a method similar to the moment method to express the induced currents in
terms of these basisfunctions. Schiffer and Thielheim (1979) developed a low frequency approxi-
mation for the thin dielectric disk by using a Rayleigh type approximation. In this solution the
induced currents are found by assuming that the internal fields have the same form as would be
obtained in statics. The approximation is valid for disks whose physical cross section is much larger
than the thickness and whose thickness is much less than a wavelength. The solution appiies at
high frequencies (i.e. to disks whose cross section is large compared to wavelength) only if the disk

is sufficiently thin.

The work to be described here applies specifically to disks whose cross section is large com-

pared to wavelength but is not restricted to disks which are thin compared to wavelength nor to
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disks of circular cross section. The solution is obtained by using a variation of the Kirchoff approxi-
mation employed in physical optics scattering from rough surfaces. In this approximation the fields
on the surfze¢e are approximated by the fields on a plane tangent to the surface. In the application
to the disk, the fields inside the disk have been approximated by the fields inside a slab of the same
orientation and thickness. Given the fields inside the disk the scattered fields can be obtained from
currents induced by these internal fields. In the required integration the cross section of the disk

need not be circular nor must the disk be thin compared to wavelength.

In the sections to follow a formal solution for the scattered electric fields is developed in terms
of the unknown fields inside the disk. Then the Kirchoff-style approximation for the internal fields
is derived for an arbitrarily oriented disk. Using this approximation the volume integration is
carried out to obtain explicit forms for the scattered fields for observers in the far field of the disk.
Finally, this solution is expressed in the form of a dyadic scattering amplitude for the disk. Ex-
amples of the scattering amplitude are presented to illustrate the effects of frequency, dielectric
properties and orientation of the disk. Several checks have been made on the solution and are also
described. It can be shown that the solution satisfies conservation of energy at high frequencies and

that the solution predicts the accepted result for radar cross sections in the special case of normally

incident plane waves.
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II. GEOMETRY
The problem to be addressed here is to calculate the fields scattered by a plane wave of
arbitrary polarization incident on an arbitrarily oriented disk. The problem is illustrated in Figure
1. The plane wave is assumed to have polarization (direction of the electric field) q and to be prop-
agating in the i direction. Specifying iin terms of the spherical coordinates (8;,8;) and for con-
venience letting the incident wave have unit amplitude, one can write:
E, =dexpGk,1°7) n
where
i==sin(9;) [cos (¢)) k +sin(¢,) ¥] — cos(6,) 2 (2a)
and k, = w\/'eo_p;. Aside from the requirem'ent q *i=0the unit vector q is arbitrary. The orientation
of the disk is described by the Eulerian angles (8,¢,y) as indicated in Figure 2. (See Goldstein, 1966
and also Appendix B). Starting with the axes of the disk (x', y', 2') aligned with the reference
systern (X,y,2) the disk is rotated to it.;, arbitrary position by: 1) rotating ¢ degrees about the z' =
z axis; 2) rotating about the new x'-axis 6 degrees;and 3) rotating about the new z’ axis vy degrees.
All rotations are counter clockwise. In terms of these angles the normal to the disk, 1, is:
n =sin 0(sing X — cos py] + cos 9 Z (2b)
The shape of the disk is described by the function S(t'), defined in the coordinate system (x', y' z')
fixed on the disk. It is the cross sectional shape looking along the local normal to the disk (i.e.
2z’ axis). The disk is imagined to be cut from two parallel planes T meters apart by a cookie cutter

with shape S(x’,y’). S(x',y') = | on the disk and zero otherwise.

The problem as stated above is sufficiently general to describe scattering from a plane wave of
arbitrary polarization and direction of propagation incident on an arbitrarily oriented disk. The
orientation of the disk, the shape of the disk, S(x',y"), its thickness, T, and its dielectric properties

are all arbitrary in the analysis to follow.

e R G S A TR e T T AR v



III. THE FORMAL SOLUTION

To obtain a solution for the scattered fields in terms of the fields inside the disk the constitu-
tive relations D = ¢ E + P and B = u, (H + M) are first used to obtain a form of Maxwell's equations
with P, M and conduction current, Tc, as sources. Then, Fourier transforming and introducing the

magnetic vector potential, A, one obtains the wave equation:
VA +K2A=-p (T, ~jwP+T X M) (3)

which has the particular solution

dkoR
Am~—°-§[J -JwF+VXM]—R—dr (@)

where R = |T—T | and dF’ = dx'dy’dz’ and the integration is over the volume of the disk. The’

scattered electric field can be obtained from the vector potential in the form:

E(7) = jwlA +i5v RN 5)
(o]

which yields (Substituting Equation 4 into Equation 5):
E(r') = jwnyg S Tp(r) - Gayr') ar (6)

In Equation 6, T’l‘ ™= Tc ~jwP+ ¥V X M and E(T/l" ) is the dyadic Green’s function for free space:

= ejk R 1 -
&) = u+k vvl——--{n o -
- ix ™
3 o
[1+ Jk R (k R)’] VRTR| —— 4 R

‘To complete the solution the sources i) o Jw P and ¥ X M are required. In principle, arbitrary
relationships between J , P and M and the fields E and B can be used; However, for most media
important in remote sensing of the earth (e.g. ice, snow, water, vegetation, soil, etc.) it is-appro-

priate to assume a simple linear relationship:




J, = oF
P = ¢xE 8
M = xM H

where x, is the electric susceptibility and x, the magnetic susceptibility. In mest cases xp = 0.
Assuming this to be the case the total current TT becomes
Tp = —jwe, X E 9)

where i‘e is an equivalent, complex, electric suspectibility:

Ry = X, +i0/we, (10)

The complex relative permittivity of the medium, €& is:
§ = X+l . (1
= €+] o/we, (12)

where ¢, is the relative permittivity of the disk when ¢ =0. Substituting Equation 9 into Equation
6, one obtains an expression for the scattered electric field in terms of the electric field E(t) inside

the slab:
Eyo ( = k2 S 2 @E® - T dr (13)
\4

e R R



o T

IV. THE FIELD INSIDE THE DISK

Equation 13 applies for observation points both inside and outside of the object. If the
observer is inside the object, then Equation 13 is an integral equation for E(7). When the observer
is outside, then Equation 13 is a solution for the fields scattered by the object in terms of the
fields inside the object. The problem, of course, is that the fields inside the object are not known in
either case, and approximations are necessary. The approximation to be used here will be to
assume that the fields inside the disk are the same as would exist in a slab of inifinite parallel faces
of the same thickness and orientation. This is an approximation which ought to be reasonable for
disks whose cross section is large compared to wavelength and thickness and is independent of
the dielectric constant of the medium. It is the analogue of the tangent plane (Kirchoff) approxi-

mation employed in the physical optics approach to scattering from surfaces.

The fields inside the equivalent slab are most easily obtained in the coordinate system (x'y’z")
fixed on the disk. Once obtained they can then be expressed in terms of the reference coordinates
(x,y,z) by a suitable transformation of coordinates. The problem as seen in the coordinate system
fixed on the disk is shown in Figure 3. Notice that the origin of the primed coordinate system is
at the center of the slab and that the plane wave is incident from the arbitrary direction, i . As
seen by an observer on the slab the incident plane wave has the form:

Eine (F) = § eikol’T (14)
where primes (') are being used to remind the reader that these are coordinates in the reference
frame of the disk. To find the fields inside the slab, it is convenient to resolve the incident wave
into its horizontally and vertically polarized components as seen by an observer on the slab. Letting
h and v be the appropriate unit vectors in the slab’s reference system, one can write q in terms of
its projections on these polarization vectors: q§ =(q * h)h +(q * v )¥. With this notation a unit
amplitude incident wave, as seen by the observer on the slab, can be written:

Eine () =[(@ ~R)R+(@ )7 ] efkol'F’ | (15)




The fields inside the slab are also plane waves. Explicitly separating their dependence on the co-
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ordinate perpendicular to the slab (z') and coordinate parallel to the slab boundaries (x',y'), they

can be written in the form:
By, (1) = &, (x,y)el(0koK D' 4 &_ (x’,y")ei(nkoK2)e’ (162)
where
B,y =g, enke Ky X" +K{ y] (16b)

n is the index of refraction of the medium in the slab (n =/€;) and K =K| x' + K;, y'+K; 2’
is a unit vector in the direction of propagation of the wave inside the slab which propagates in the
+ z-direction (i.e. K; > 0). The vector ampiitudes €, of the waves inside the slab can also be re-
solved into horizontally and vertically polarized components. Thus, let % , v%, be unit vectors
in the direction of the electric field inside the slab when the slab is excited by an incident hori-
zontally or vertically polarized wave, respectively. (For example, if ¢ =h then the waves inside
the slab will have polarization ﬁ: .) Also let the (scalar) amplitude of the waves inside the siab
due to an incident horizontally or vertically polarized wave of unit arr‘xplitude be eﬁ, e$ respec-
tively. Then, in the case of an incident wave of arbitrary polarization § one can write the ampli-
tude of the waves inside the slab as \

§.=(d *h)efhf +(q - v)el vt (1"
The scalars eﬁ,v are characteristics of the slab, independent of its orientation. They are obtained
from the boundary conditions at the slab interfaces in the same manner as is conventional in find-

ing the reflection or transmission coefficients (e.g. Born and Wolf, 1959). One obtains:

_th,v x'h,ve’w At

+ o= =]
Chy"™ N e
v l-rﬁ’ve"p
(18a)
t
- hyv —-A” (18b)
eh,v'—-q—ﬁej
l—rﬁyvev
7
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where

Y = 2%,TnK, (192)
a* =—;-k° T(~i}, £ nK}] (19b)
= =2y
Ty T >‘h,v (19¢)
2 A
"= Zhy 19d
th,v L+, Ay (15d)
Kz
1K,
A, = nE (196

where K, = K +q >0and i, = i +h <0;and the F v and t, v are the reflection and transmission
coefficients, respectively, of a half-space with the same dielectric propertiés as the disk. The minus
sign (—) in Equations 19e, f are the result of the convention adopted here foriand h (i.e. the wave

is incident on the slab from the fi side).




V. THE SCATTERED FIELD

The fields scattered from the disk can now be obtained by substituting the fields inside the
disk (Equations 16) into Equation 13. To do the integration in Equation 13 over the volume of
the disk it will be assumed that the observer is nany wavelengths from the disk (k,R >> 1) and
that the disk is small compared to the distance between the disk and the observer (e.g. L/R <<]
and kL2/R << 2w where L is a dimension characteristic of the size of the disk). In this case one
can approximate the Greefx’s function by:

‘ko(Ro"a d f')

_-pa-_.. e
G(r/r) (I-609) Gk,

(20

where R, is the distance from the center of the disk to the observer and § is a unit vector from the
origin to the observer (i.e. in thz tlirection gf propagation of the wave scattered to the observer).
Substituting Equation 16 into Equation lé, using Equation 20, and separ'ate!y doing the integra-
tion over the (x’, y') and 2’ coordinates one obtains the following .. ression for thé fields scatter-

ed from homogeneous disks (x, and o constant):

ejk°R° - -

Eg ot @ =K2%, ey R(MS @) @21
where
T/2
RM= S o X {[§+ ko [nKz=0z]2" 4 -3 aiko (nKz+oz] Z'] X & ’dz' (22a)
-1/2

= T{6 X [&, X 6] sinc [%k,T (nK; = 0})] +
+ 8 X [E.X 8] sinc [k, T (nK} +8,)1}

(- -]
Swp = § sapein e Ty, (220)

-0

The subscript “t” in Equation 22¢ denotes transverse components: T, = x'g'+y'y

k 73] - k s 7 - + . .
and 7, = :?r [nK;=-5,] = 7—; n X [nK =6)Xi1]. Notice that using Snell’s law at the slab
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boundaries, n K{ = i, so that one can write B, in terms of { and & :
-t k - * - -
py=2aX[(1—-0)Xn) (22d)
2r

The vector direction of the scattered field, Escﬂ, is determined by the vectors 6 X (€, X 0)
associated with R(T). Since 6 is a unit vector in the direction of propagation of the scattered field
(i.e. pointing from the disk to the observer), the scattered fields are clearly transverse as seen by

the observer. This is as expected since a far field limit has been taken to obtain the sclution.

It is conventional to express the scattered fields in terms of their vertically and horizontally
polarized components. To do so, let p be a unit vector in the direction of vertical or horizontal
polarization (defined by the observer). Then pE scat(Q ) is the scattered electric field of polari-
zation p due to an incident wave of polarization q (as defined at the transmitting antenna). Noting

thatp [0 X (8. X 0)] =p * &, and using Equation 17 for &, one can write:

5 oRo
Egeat @ = [p Fi,0)- ) TK2X. S <v,> (23)
where the dyadic F(i ,5 ) has the form:
F(i,0) = [hhef +v27 €] sinc [k, T (nK, — o})] +
249)
+ [hthef +v v e}] sinc [¥%k,T(nK} = 0})]
Equation 23 suggests the definition of a dyadic scattering amplitude f-(f ,0):
- Tk X
f(i,6) = —=2 °S(V)F(l ,0) (25)
4w

To complete the solution it is necessary to find explicit expressions for the polarization
vectors v%, hZ and ¥, i associated with the slab and with g, p associated with the incident and
scattered waves. To do so the following definitions will be adopted: A horizontally polarized

wave (h) is one whose electric field is perpendiculzir to the pnlane of incidence (plane defined by the
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z-axis and the dirsction of propagation) and a vertically polarized wave (v) is one whose electric
field is parallel to the plane of incidence. In addition, ¥, h, k form a right hand orthogonal set
where k is a unit vector in the direction of propagation of the waves: ¢ X h = k. With these
definitions, one may write explicit forms for the polarization vectors in the reference ¢coordinate

system. Thus, for the incident wave (i.e. § = h; or V,) one has:

' i _iX3 :
Fix 2 (=62)
v = B xi (26b)

where i is defined in terms of the spherical coordinates 6, 9)):
i==sin 6,[cos ¢, X +sin ¢; ¥1 —cos 8; 2z (26¢)
and in the case of the scattered fields the unit vectors fls, \?s in the direction of horizontal and

vertical polarization (4 = ﬁs or \'rs) are:

X

O
N»

h, = 27
M= oxzl 272)
vy =hg X ) (27b)
where the spherical coordinates (4,,6,) have been adopted to define 6:
6 =sin 6 [cos b % +sin ¢ ¥] +cosb 2z (27¢)

The unit vectors h, v are the direction of horizontal and vertical polarization as defined by an
observer on the slab but expressed in terms of the reference coordinate system (unprimed). Since
i = 2’ as seen in the reference system and since the direction of propagation of the incident wave

as seen in the reference frame is i, one obtains:

. iXn
h= —— 28
J1Xn| (28a)
v=hXi (28b)
where the normal to the slab n is defined by the Eulerian angles (9,4,7):
n=sinf [sinpX—cos¢y] +cosf 2 (28¢)

11
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The unit vectors fr: V: for the direction of electric field inside the slab are also required. Letting

f(f be a unit vector in the direction of propagation of the two waves inside the slab one has:

. K. Xn
hi=— 29a
€ |KyXnl (293)
‘ vi=hixK, (29b)
It is shown in Appendix A that
- - I R
K. =:‘[i+9t i] (30a)
where
Q. == B /n2=1) +( - 2)° (30b)
Thus one obtains:
hf=h (312)
ad l - & - l o =
ve=;[v+ﬂtth]=;[v+Q£] (31b)
With the polarization unit vectors given above one can write the solution for the scattered .
field in the final form:
o - - - . - .k R
b+ Egea@ = 1p- T, 0) - 1822 (32a)
v}
? . l ~N rnt 1
14, 0) = ;;Tkg % SCPF G (32b)
22 .. L - 1 Py - P . ' '
F(i,0) = [hhe¢y, +; (v + Q) ve ] sinc [k, T(nK; + oz)]
32¢)

+ [hhef+ i(v +8,) ve ] sinc [k, T(nK; =~ 0,)]



where the eﬁ'v are given by Equations 18 and 19 and

i+ f=~—sin 9, sin 0 sin (¢ — ¢;) — cos §; cos §

Q
N
i

6 * it =sin O sin 0 sin (¢ -¢s) +cos 6 cos 6

nK ch=?-1D+34 07

b2

A

N~
n

Q, = (-, *nK)) AXh

Explicit forms for the shape function .§(D;) are ziven in Appendix C.
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VI. EXAMPLES

Examples of the scattering amplitude will be presented in this section for a sample disk to
illustrate some of the characteristics of Equations 32. Calculations have been made to illustrate
effects of frequency, disk orientation and dielectric constant on the scattered fields. The calcula-
tions are for a nominal disk of radius 10 cm and thickness 0.5 cm, and except where indicated the
frequency of the incident radiation is 9 GHz and the dielectric constant of the disk is & =25 +j11
which is representative of leaves in the microwave region. In these examples the ingident radiation
has been choosen so that the direction of incidence is in the y-z plane 30° from the z-axis (i =
~-c0s(30°)z —sin(30°)y) and the normal to the disk, n, is in the plane of incidence (i =~sinf y +
cos¢ z). The geometry is shown in Figure 4, To do the calculations the observer is imagined to be
on the surface of a large sphere centered on the origin and the scattering amplitude f)-?(f,é)-c‘l
is computed as the- observer is moved around one of the great circles formed by passing a
plane. through the z-axis. The magnitude of the scattering amplitude, | fr?'(i,é)-c‘; |, has been dis-
played as a polar plot of amplitude versus angle on the great circle (Figurss 4-15). In each case the top
of the figure corresponds to the point when the observer is on the z-axis. When the observer is in
the piane of incidence (e.g. Figures 6 - 15) backscatter occurs at 30° to the right of the top and
forward scatter at 150° to the left. The polar plots are all line;r in amplitude. The outer circle
represents | p*1(1,0)*q | = 1.0 and the inner circle is | b-?('i,b)‘q | =0.2. This scale is the same in all
the examples to be presented here (Figures 5-15) except for the 45° and 90° cuts in Figure 5 where

the outer circle vas chosen to be | iJ-T(i,o)' q | = .05 to better show the detail of these small

scattered fields.

The elements of the scattering amplitude most commonly of interest are:
hy « 7(1,0) * by = £},
¥+ 13,0) * by = f,p

s - . -
hs ¢ t(l,O) * Vi = fh\'
. - . .

v t(1,0) v, = fov
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The elements fhh and fvh are proportional to the horizontal and vertical polarized scattered field,
respectively (as seen by the observer), due to an incident wave of horizontal polarization. The
elements, f , and f,, are proportional to the scattered field o/ horizontal and vertical polarization,

i» Vi and h, V¢ are

respectively, due to a vertically polarized incident wave. The unit vectors, h
indicated in Figure 4 for reference. The magnitude of these four components of the scattering

amplitude have been calculated.

Figure 5 shows the four components of the scattering amplitude fy;, .., f,, and £, for an
observer in the plane of incidence (0°), in a plane perpendicular to the plane of incidence (90°)
and in a plane half way between these two (45°). (See Figure 4.) The calculations are for the case.
fi = 2. Each plot indicates the magnitude of 13'?(?,6)'?1 in polar form with the z-axis at the top
of the polar plot. Notice that f,, =f, =0 when the observer and f are in the plane of incidence
(0°). That is, there is no depolarization in this case. This is true whenever 9, i and i are coplanar.
Also notice that f,,;, = 0 when the observer is in a plane perpendicular to the plane of incidence.
This is a coincidence dependent on the definitions choosen for the polarization unit vectors. In the
plane of incidence (0°), the scattering amplitude has two major peaks, one in the direction of inci-
dence, i, (the downward pointing peaks in Figure 5) and one in the specular direction (the upward
pointing peaks). The specular peak is in the direction of radiation reflected from an identically
oriented infinite slab and the downward or “forward scattered’ peak is in the direction of radiation

transmitted through such a slab. For a highly conducting disk, the forward scattered radiation com-

bines with the incident field to produce a ‘“shadow” behind the disk.

In the physical optics regime the shape and amplitude of the forward scatter and specular
peaks depend on the product, ka = 2ma/X\ where a is the radius of the disk and X is the wavelength
of the incident radiation in the ambient medium (Appendix C). This is illustrated in Figures 6-7
which show fh h and . (respectively) for several values of ka. The geometry is as illustrated in
Figure 4 with the observer in the plane of incidence (0° plane). Notice that as ka increase the peaks

become larger and narrower in the directions of the reflected and transmitted waves. For a circular
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disk, the peaks behave like J i(x)/x where J | (x) is a Bessel function of first kind and x depends on

ka and disk orientation (Appendix C).

Changing the orientation of the disk affects the direction and shape of the peaks. This is
illustrated in Figures 8 (fhh) and 9 (fw) for the special case where 0,it f, Z are all coplanar. In
these examples the observer is in the 0° plane (Figure 4) and n is also in the 0° plane but at several
different angles with respect to the incident wave. The four polar plots have been obtained with i
parallel to i (6 = 0°) and then moved to the left so that the angle between fi and i is 15°, 45° and
finally 60°. Notice that as the direction of i is changed the specular peak changes direction but
that a peak always remains in the forward scatter direction. As the disk appears more edgé on to
the incident radiation (8 > 60°) the specular and forward scatter peaks merge and their amplitude

decreases toward zero. (The theory is not épplicable near grazing incidence.)

The effect of the dielectric constant of the disk on the scattered fields is illustrated in Figures
10-15. The geometry is as illustrated in Figure 4 with the observer in the 0° plane and i = 2. The
frequency is 9 GHz (ka = 2). Figures 10 and 11 are for a lossless dielectric (€, real) and show the
effect on fy and fw, respectively, of increasing the relative dielectric constant of the disk. With the
choosen frequency (9 GHz) and thickness (0.5 cm) the disk goes through a quarter wave resonance
near & = 11. These figures show the effects on the scattering amplitude of increasing €, from 1.0
(upper left) through resonance and then to large, non-resonant values. Initially the scattered
radiation increases as €, increases; however, near the resonant condition, Fr = 11, the reflected
radiation decreases markedly. The forward scatter peak, on the other hand, is only slightly affected
and appears to increase somewhat near resonance. This pattern of decreasing specular peak occurs
at all quarter wave resonances, which for this disk (T = 0.5 ¢cm) and frequency (9 GHz) occur at Er =
11, 44, 99, etc. For large values of ?r not near resonance the scattering amplitude approaches a

limiting shape as illustrated by the last two examples in Figures 10 and 11 (€, = 70 and 1000).
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The presence of loss in the dielectric significantly affects the behaviour of the scattered fields
near resonance. With even small amounts of loss, the resonance is virtually eliminated. This is
illustrated in Figures 12 and 13 which show examples of the scattering amplitude fy,;, and f,,,
respectively for the nominal disk with fixed loss (Im &, = 2) and with the real part of €, having
values near the quarter wave resonance at €, = 11. For values of Im 'é'r less then 2 a decrease in the
specular peakK is noticeable and for values of Im €, greater then 2 the resonance is even less

apparant than in Figures 12 and 13.

Figures 14 and 15 present examples of the scattering amplitude for the nominal disk with a
purely lossy dielectric: Re €, = 0. Four examples illustrating the effects of increasing Im t?r =¢" are
shown. The behaviour is very much like increasing Re €, except for the {ack of resonances. The
scattering amplitude quickly reaches a limiting value and is essentially independent of &_for

"> 10.

17



VII. NORMAL INCIDENCE
The special case in which the radiation is normally incident on the disk provides a check on

the solution. In this case one expects the horizontally polarized radiation scattered from horizon-
tally polarized incident radiation to equal the vertically polarized radiation scattered from vertically
polarized incident radiation, and that there will be no cross polarized scattered radiation. That is,
one expects:

fon = fov

t.hv =y * 0
Also, at normal incidence one expects the backscatter cross section, oy to be

oN = Rﬁ Oy

where o, is the backscatter cross section of a perfectly conducting disk and R, is the reflection
coefficient of a slab of the same thicknes;' as the disk (Ruck et al., 1970). It will be shown that

these results are obtained from the solutions developed here.

At normal incidence A = Z and h X fi =¥, and consequently, the dyadic F(i,0) has the simple

form:
, F(1,0) = hfi (e, sinc(8*) + ], sinc(67)] + ¥ [ef sinc(67) — €5 sinc(8*)] (34a)
where

6% =Yk, T [nK} to}] =%k, T [n¢1] (34b)
The polarization vectors at normal incidence are fts = ﬁi =hand - ‘.’s =+, = +V where the minus
sign (=) in the vertical polarized scattered radiation v is a consequence of the convention chosen
for polarization (v, = i, X 8) and the fact that a normal incidence i =~ 0. With these polarization

vectors one has: .
hy « F « b, = ¢ sinc (8%) +¢f sinc(67)

(35)

A F. v, = e, sinc( 6%y~ ej sinc(67)

18




Clearly f},, = f,}, = 0 at normal incidence. To determ..i¢ thu like-polarized components of scat-

tered electric field, f,;, and f,,, note that at normal incidence

°E,v =T Thy eoTn e.l;,v ) (36a)
l=n
=T (36b)

ancii. also that the reflection coefficients Rh,v of a slab of thickness T which in the notation adopted

here are:

- e -

' . A A .
Ry =% [(14 20 efy 68% + (1-2y ) e, 647 ] \/.ih ekoT 37
Lt h’v .

__ have the following form at normal incidence

o o e -

Ry = 4[(1 +n) e} el + (1 =) ¢f eTjan] o7ia (38a)

Rv =[(1 +n) Ct alan - (1-n) e; e—jan] e—ja (38b)

e e - CE U e s bae  er——

where a = %k T. Now substituting Equations 36 into Equations 35 and using Equations 38 one

obtains:

2

hy*F-h = -jm R, (39a)
. m oL 2
vg*Fev = J(_—_—ko’r) -1y R, (39b)

And since R, ==R, =R, itisclear that f,, =~f, . The sign difference between f},;, and f,
is a consequence of the convention chosen for polarization: vertical polarization for scattered and

incident waves along the same line of sight are in opposite directions.

The radar cross section at normal incidence is readily obtained from the preceeding results
and also provides a check on the solution. Recalling that the definition of radar cross section at

normal incidence is

19




[F_<E* ]

oy = lim 41rP7TELEg.7_ (40)
N Roe P P

one obtains

N (Tko)

oy =1+ F b msmnz (41)

Now using the result that n-1= 'i‘e and that at normal incidence S (7,) =S, where S is the
area of the disk (Appendix C) one obtains: A -

2 Q2
kg S°IR 2 42)
v

oN =

The radar cross section of a perfectly conducting disk at normal incidence is 0, = kg S§/1r and so
the radar cross section of the dielectric disk at normal incidence can be written

oy=IR, Po, (43)
which agrees with the expected result (Ruck, et al,, 1971).

This result is especially simple for thin

disks. (k,Tn << 1). Keeping only lowest terms in koT in Equation 38 one can show that

Ry i '-‘:—T (n? = 1) (44)
arid so at normal incidence
k,T 5 _a(TS)? 4o
0N=<%.)ln2-ll 0. =Kg 16; fn=-1] (45)

That is, the thin disk ai normal incidence is Rayleigh-like, scattering power proportional to 1/34

rather that than as 1/7‘\2 as the perfectly conducting disk would suggest.



VIII, ENERGY CHECK

A check has been made to see if the solution for the scattered fields conserves energy. This
has been done by showing that the solution satisfies the ‘“‘optical theorem”. The optical theorem
relates the total power scattered (F) and absorbed (P,) to the scattering amplitude in the forward

direction (Born and Wolf, 1959). One can state the optical theorem as follows:
P.+P. =P 2 Imld + Nij) * § (46
s + a_ ii(-; m[q (lyl) q] ‘ L )

where P, is the power density of the incident wave, i is a unit vector in the direction of propagation
of the incident -vave, and q is a unit vector in the direction of polarization of the electric field of
the incident wave. Defining scattering and absorption cross sections by o = Ps/Pi and g, = Pa/Pi

respectively, the optical theorem becomes:

4 . Mo -
o, +0, = -l-cflm [q - t(1,i) * q) 47
where
o =§‘ N f S (FG,) * @) - [T,0) + 4] * a2 (482)
i Sphere
0, =22 =\/££§S'Sa§ +E* dv (48b)
! 0 disk

the integration in the expression for g, is over solid angle dS2 = sinf d0d¢ and the fields E in the
expression for o, are the fields inside the disk produced by a unit amplitude incident plane wave.
They are given in the refefence frame fixed on the disk by Equations 16 in the text. For purposes
of doing the energy check, the orientation of the disk is unimportant and can be chosen for con-
venience; the choice in which the primed and unprimed systems are identical is most convenient

(8 = ¢ =~ =0). In this case, using Equations 16 in Equation 48b one obtains:

inh (. T - — . i T
0, = S,0V/A e, {[l eg 1> + e} ,2] 5_1£K_i_(_"_1_)+ 2R, [eq eq* (dg+df™) ﬂé&—)]) (49)

where § | is the cross sectional area of the disk and q € {h,v} . The e:‘{ are given in Equations 18a,b,




and k, = Re(nk,K;), k; = Im(nk, K;) where K, is given by Equation 33c,

An analytical and a numerical method has been used to check that the solution given by
Equation 25 does satisfy the optical theorem when ka>>1, The analytical check is made by
asymptotically evaluating the integral for o, given by Equation 48a for ka>>1. This evaluation is
carried out in Appendix D where an explicit formula for o, is given by Equation 6D. When this
expression is used in the optical theorem along with Equation 49 and Equation 28, the conservation

theorem has been shown to be satisfied identically.

Following the analytical check, a numerical check was made by computing o4 and o, from
Equations 48 and 49 and comparing their sum with the right hand side of Equation 47. Calculation
were made for the case of a circular disk of radius 7cm, thickness Imm and relative dielectric
constant ?r = 36 + j13. The dielectric constant of the disk was choosen using the de Loor formula
(Fung and Ulaby, 1978; de Loor, 1968) for leaves with 70% water at a frequency of 7 GHz. Two
expressions for the total cross section were developed: The first, o1, was found by computing o,
and o from Equation 48 and 49. The second, o.'r, was obtained by taking the imaginary part of
4r (c’i’t’(f,f)-ci)/ko. If the optical theorem is satisfied exactly then o = a»'r. The results of these
calculations are shown in Tables [ and II. Table I shows the results for a horizontally polarized
wave incident at 30° with respect to the normal to the disk and Table II shows the results for a
vertically polarized wave also incident at 30°. The tables list 04,0,,07 =0, +0, and the albedo,
as/o-r all obtained numerically from Eguations 48 and o-’r obtained from Equations 47.
Examples are shown in each table for frequencies of | GHz, 4 GHz and 7 GHz corresponding to ka
of about 1.5, 5.0 and 10.3 respectively, since the theory is a high frequency theory valid for large
ka, one expects energy conservation to be satisfied best for large ka. The results indicate agreement
which improves with increasing ka and is within about 2% at the largest value of ka. To obtain
the numerical results for scattering cross section the integrand, It-‘(f,é) °q lz in the expression for
0, has to be computed on a unit sphere. The results shown in Tables I and IT were the result of

computations using a grid of equally spaced points separated about 3° in 8 and ¢.
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APPENDIX A

Polarization Vectors inside the Slab

The propagation vector K* for waves inside the slab can he abtained from the boundary
conditions (Snell’s law) at the surface of the disk. To do so, adopt the following notation in the

reference frame of the disk:

Ry =nk, [KF & +K 9’ +KF 2] =nk, K * Al
i'-k; li &' +i, ¥ +1i; 2') =k, i ' A2
Since the boundary conditions must be satisfied for all x’, y’, cne has:
ki, =nk, K&8 nk, K, A3
ko iy =nky Ki'8 nk, Ky A4

and since by definition the waves in the slab are propagating in opposite directions along the z'-axis,
it follows that:
Ry =nk, [Ky &' +K §' £K; 2] A5

Now using K, *K. = (n ko)2 which follows form the wave equation, one can solve for K

’ l 14 !
K= Vink,)? [1-(K)? =(K))?]

— 3 v 21072 432
nko‘/(;k°) K2[(ip)? +(i})2]
= Vi -1+ Gi)?

=:l‘\/(n2-l)+(§ "h)? A6

Now using Equations A3, A4 and A6 in Equation A5 one can obtain an expression for ’E,::

YR Y BT Y] 1 3 - a
Kz =k, [iy X +1y vl tnk, [;\/(nz-l)-ﬁ(l 'n)2]n

=k { i =G 2) Al /0 =D+ *a)h}
=k°{i+niﬂ} A7

where

Qe=-( *a)z/(>=1+( -0)? A8




Thus

| o
Ry = oo Re

3 e

[i+Q, A9

This result can now be used to obtain an expression for the unit vectors in the direction of hori-

zontal and vertical polarization inside the disk, One obtains:

d .K Xﬁ iXﬁ -
% g ek = — A10
€ K Xl ixal =M
v§=ﬁ§xxt=ﬁxkt=ﬁ-[v+atﬁxm All

Notice that although f:: = ﬁ; = h the unit vectors of the verticaily polarized waves in the slab in
general are not in the same direction: "J: * 0:. This is true because the two waves inside the slab do

.ot propagate in the same direction. This is illustrated in Figure i16. At normal incidence V: = -

.-3- -
Ve Y.




APPENDIX B

Euler Angles tor Orientation of the Disk

The Euler angles which specify the orientation of the disk consist of three coordinate rota-
tions, Starting with tlie reference coordinate system and coordinate system for the disk aligned,
one performs the following counterclockwise rotations:

l.  Rotate ¢ degrees about the original z = 2 axis

x' cos¢ sing 0 X

y' = ~sing cosg 0 y

z .0 0 l z
2. Nextrotate § degrees about the new Xx-axis

x" 1 0 0 x'

y" = 0 cosd sind y'

2" 0 =sind cosd z'

3., Finally rotate y degrees about the new z-axis

x" cosY siny 0 X"
y'" = -siny cosy 0 y"
z’l’ 0 0 l z”

These three rotations are applied in succession to obtain the relationship between the reference co-

ardinate system (X,y,z) and the (inal coordinate system f{ixed on the disk (x",y',2"). Thus:

x' cosy siny O | 0 0 cosp sing 0 X
y'| = | =siny cosy O 0 cosd  sind -sing cosp O y
1 0 0 l 0 ~—sin@ cosf 0 0 1Lz

or
x' = [cosycosg-sinysindcosd] X+ [cosysing+sinycospcosd )y + [sindsiny]z
v » = [sinycosp+cosysingcosf] X + [~sinysind+cosycospcosfly + [sindcosy] z

z' = [sinBsing] X + [—sinBcosply + 7. s8]z



APPENDIX C
The Shape Function $(5})

The shape function §(i7;) is defined in the reference frame of the slab by
Swp={{ saeizmir a

where SG';) is the cross sectional shape of the disk and where

i - - k - : u -
"t’i,?r[i;-o;] =:)-’-°-rn>< [ —06)Xil)

Ti=x'k+y'y
It is necessary to express this function in the coordinates of the reference frame (but the integration
is done in the primed coordinate system.) The problem is to express'i"; in terms of the reference
coordinates (angles 6;, ¢; and 6, ¢, and 8, ¢, 7). Since v, and v;, are the projections of B, on the

x' and y’ axes and since dot (scalar) products are invariant under coordinate rotations, one can write

where i, 0 are the directions of propagation of the incident and scattered waves as seen in the
reference coordinate frames:
i=- sind; [cosg; X +sing; ¥] —cos 0, 2
8= sind [cosg, X +sing, ¥] + cosf 2
and X', ' are unit vectors along the x and y axes of the disk but as seen by an observer in the
reference system. These unit vectors can be obtained from the Euler angle rotations (Appendix B):
x'= [cosycosg —sin v sin ¢ cos 9] X +
+ [cosy sing + sin ¥ cosg cosf] ¥ + sinf siny 2
¥’ == [siny cosp + cosy sing cosf] X +
+ [~ siny sing + cosy cos¢ cosf] ¥ +sinf cosy z

2’ =sind [sing X — cos¢ ¥] + cosf Z
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from which one obtains

Y 0
¥x =35 lasiny = f cosy]

k
’
Vy ":',_'g (8 siny + acosy]

where
a = cosf[sind; sin (¢—9;) + sin8s sin (¢—¢;)] =sinb [cosh; + cosos]
B = sin 8; cos (¢—9;) + sind; cos (¢—9,)

An important special case is that of a circular disk of radius a. By changing variables so that

the integration can be done in cylindrical coordinates one obtains:

8w} = =1, (2mva)
4

where

k :
v=3-’5-'r\/a3 +{32

and J ) (x) is a Bessel function of first kind of order unity.
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APPENDIX D

High Frequency Evaluation of o

The scattering cross section, o, is evaluated asymptotically for large kja in this appendix.

Starting with the definition of scattering cross section (Equation 48a) and using Equation 25 for

f(1,) on obtains:

a,=C S S' 15@;) 12 Q) (6,6)d02 1-D
sphere
where
w@) (0.6) = | F(i,0)q 2 = | sinc (0+)e;€1: +sinc (67)egdy 2 2.D
8% =% k T(nK} £ 0} ] 3-D
¢ = 2T 4D
4 ©

and q € {h,v} and the subscript “¢” in Equation 2-D indicates polarization unit vectors of waves
inside the disk (see Equations 29-31). Without loss of generality, it has been assumed that the disc

remains in its unrotated position (8 =¢ =y =0).

When k,a>>1, the function | §(B{) 12 appearing in Equation 1-D becomes very sharply peaked
at the angle of reflection (6,,¢,) and the angle of transmission (8,,4,); and since w(@ (0,p)isa
smoothly varying function under most conditions, the major contribution to o for large ka is
expected to come from the vicinity of specular reflection and transmission, This leads to a pro-
cedure to évaluate the integral in Equation 1-D which is asymptotically correct for large k,a. To
formally carry out the procedure, the integral over the spherical surface surrounding the disk is

projected onto two integrals in the plane of the disc by means of the transformation.

a, = sinfcosg

5-D
a, = sinfsing




The transformed expression is:

= C{ S+§}x§(ﬁg> W@ (g,) 2%
|cos 8 |
where

A= {aﬁ + ozf, < 1,cos62 0}
t

Using the sharply peaked character of | §'(Bt) lz, Equation 6D becomes

cw(@ @,,6)

35 2 2
L - VD00 A e N S 135}) 1 deryder, 7-D
s lcosf | ¥

T

Once again using the fact that k,a>>1, the integrals in Equation 7D can be extended to the whole

ay Qy, plane. The resulting integrals can then be evaluated exactly by employing Equation 22c.

The result is

(27)% CS
g = W (W(Do,_,8,) + WD, 9] 8-D
where S is the area of the disc. In arriving at Equation 6D the identity cosf; =|cosf | = |cosd, |

has been used.



REFERENCES
Andrejewski, W. (1952), “Die Beugung Elektromagnetischer Wellen an der leitenden Kreisscheibe
und an der kreisformignen Offnung im leitenden ebenen Schirm”, dissertation for Rheinisch-

Wesfalischen Technischen Hochschule, Aachen, Germany.
Born, M and E. Wolf (1959), Principles of Optics, Pergamon Press, Section 3.5

Bowman, J.J,, T. B. A. Senior and P. L. E. Uslengi, Editors, (1969), Electromagnetic and Acoustic

Scattering by Simple Shapes, North-Holland, Chapter 14 (by F. B. Sleator)

de Loor, G. P. (1968), “Dielectric Properties of Heterogeneous Mixtures Containing Water”, J.

Microwave Power, Vol. 3, pp 67-73.

Fung, A. and F. Ulaby (1978), “A Scatter Model for Leafy Vegetation”, IEEE Trans. Geosci.
Electronics, Vol 16 (#4), pp 281-286

Goldstein, J, (1966), Classical Mechanics, Addison-Wesley, Chapter 4.

Hodge, D. B. (1980), “Scattering by Circular Metal Disks”, IEEE trans. on Antennas and Propaga-
tion, Vol. AP-28 (#5), pp. 707-712.

Lang, R. H. (1981), “Electromagnetic Backscattering from a Sparse Distribution of Lossy Dielectric

Scatterers”, Radio Science, Vol 16 (#1), pp 15 - 30.

Meixner, J. and W. Andrejewski (1950), “Strenge Theorie der Beugung ebener electromagnetischer
Wellen an der vollkommen leitenden Kreisscheibe und an der kreisformigen Offnung im

leiteriden ebenen Schirm:”, Ann. Phys Vol. 7, pp 157

Ruck, G. T., D. E. Barrick, W. D. Stuart and C. K. Krichbaum (1970), Radar Cross Section Hand-

book, Vol 2, Plenum Press, New York.

31




Schifi‘er, R. and K. O. Thielheim (1979), “Light Scattering by Dielectric Needles and Disks"”, J.
Applied Physics, Vol 50 (#4), pp 2476-2483.

Weil, H. and C-M Chu (1976a), “‘Scattering and Absorption of Electromagnetic Radiation by Thin .
Dielectric Disks”, Applied Optics, Vol 15 (#7), pp 1832-1836.

Weil, H. and C-M Chu (1976b), “Integral Equation Method for Scattering and Absorption of Elec-

tromagnetic Radiation by thin Lossy Dielectric Disks”, J. Computational Phys., Vol 22 (#1),

pp 111-124, !:



FIGURE CAPTIONS

Figure 1.
Figure 2,

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Problem Geometry.
Eulerian angles (8, ¢, ) which describe the disk orientation,

Geometry as seen in the coordinate frame fixed on the disk. The origin is half-way

between the parallel faces of the disk.

Geometry used in calculating the examples. 6, = 30° and 1 is in the y-z plane. iiis

also in the y-z plane and except where noted n = Z as show} here.

Components of the scattering amplitude when the observer is in the plane of incidence

(0°), perpendicular to the plane of incidence (90°) and half-way between (45°).

Magnitude of the scattering amplidue, fy,;, in the plane of incidence as a function of

ka.

Magnitude of the scattering amplitude, f,,, in the plane of incidence as a function of

ka.

Magnitude of the scattering amplitude, fhprasa funqtion of disk orientation. & is the

angle between i and 1.

Magnitude of the scattering amplitude, f,y» as a function of disk orientation. 6 is the

angle between fi and i.

Magnitude of the scattering amplitude, f},;, in the plane of incidence as a function of

dielectric constant (no loss): €, = €',

Magnitude of the scattering amplitude, f,, in the plane of incidence as a function of

dielectric constant (no loss): €, = ¢'.
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Figure 12. Magnitude of the scattering amplitude, fhh' in the plane of incidence near resonance

i
for dielectric with loss.

Figure 12. Magnitude of the scattering amplitude, f,ys in the plane of incidence near resonance

for dielectric with loss. }

Figure 14. Magnitude of the scattering amplitude, fip» in the plane of incidence for purely lossy

dielectric: €, = je".

Figure 15. Magnitude of the scattering amplitude, f,y» in the plane of incidence for purely lossy

dielectric: €, =je".

Figure 16. Polarization and propagation vectors inside the slab.
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Figure 1. Problem Geometry
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Figure 2. Eulerian angles (0, ¢, ¥) which describe the disk orientation.
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Figure 6. Magnitude of the scattering amplitude, fy,},, in the plane
of incidence as a function of ka.
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Figure 7. Magnitude of the scattering amplitude, fyy, in the plane
of incidence as a function of ka.
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-.Fig'liré' 8. Magnitude of the scattering amplitude, fpy,, as a function of disk orientation. v
© is the angle between fi and i.
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o©
i

0° ©=15°

© =45° ©=60°

Figure 9. Magnitude of the scattering amplitude, fyv, as a function of disk orientation.
© is the angle between i and 1.
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Figure 16. Polarization and propagation vectors inside the slab.
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