530 research outputs found
Friction, order, and transverse pinning of a two-dimensional elastic lattice under periodic and impurity potentials
Frictional phenomena of two-dimensional elastic lattices are studied
numerically based on a two-dimensional Frenkel-Kontorova model with impurities.
It is shown that impurities can assist the depinning. We also investigate
anisotropic ordering and transverse pinning effects of sliding lattices, which
are characteristic of the moving Bragg glass state and/or transverse glass
state. Peculiar velocity dependence of the transverse pinning is observed in
the presence of both periodic and random potentials and discussed in the
relation with growing order and discommensurate structures.Comment: RevTeX, 4 pages, 5 figures. to appear in Phys. Rev. B Rapid Commu
Magnetic Fields, Relativistic Particles, and Shock Waves in Cluster Outskirts
It is only now, with low-frequency radio telescopes, long exposures with
high-resolution X-ray satellites and gamma-ray telescopes, that we are
beginning to learn about the physics in the periphery of galaxy clusters. In
the coming years, Sunyaev-Zeldovich telescopes are going to deliver further
great insights into the plasma physics of these special regions in the
Universe. The last years have already shown tremendous progress with detections
of shocks, estimates of magnetic field strengths and constraints on the
particle acceleration efficiency. X-ray observations have revealed shock fronts
in cluster outskirts which have allowed inferences about the microphysical
structure of shocks fronts in such extreme environments. The best indications
for magnetic fields and relativistic particles in cluster outskirts come from
observations of so-called radio relics, which are megaparsec-sized regions of
radio emission from the edges of galaxy clusters. As these are difficult to
detect due to their low surface brightness, only few of these objects are
known. But they have provided unprecedented evidence for the acceleration of
relativistic particles at shock fronts and the existence of muG strength fields
as far out as the virial radius of clusters. In this review we summarise the
observational and theoretical state of our knowledge of magnetic fields,
relativistic particles and shocks in cluster outskirts.Comment: 34 pages, to be published in Space Science Review
Transverse phase-locking in fully frustrated Josephson junction arrays: a new type of fractional giant steps
We study, analytically and numerically, phase locking of driven vortex
lattices in fully-frustrated Josephson junction arrays at zero temperature. We
consider the case when an ac current is applied {\it perpendicular} to a dc
current. We observe phase locking, steps in the current-voltage
characteristics, with a dependence on external ac-drive amplitude and frequency
qualitatively different from the Shapiro steps, observed when the ac and dc
currents are applied in parallel. Further, the critical current increases with
increasing transverse ac-drive amplitude, while it decreases for longitudinal
ac-drive. The critical current and the phase-locked current step width,
increase quadratically with (small) amplitudes of the ac-drive. For larger
amplitudes of the transverse ac-signal, we find windows where the critical
current is hysteretic, and windows where phase locking is suppressed due to
dynamical instabilities. We characterize the dynamical states around the
phase-locking interference condition in the curve with voltage noise,
Lyapunov exponents and Poincar\'e sections. We find that zero temperature
phase-locking behavior in large fully frustrated arrays is well described by an
effective four plaquette model.Comment: 12 pages, 11 figure
Reaction pathways in the solid state synthesis of multiferroic BiFeO 3
The obtaining of multiferroicBiFeO3 as a pure single-phase product is particularly complex since the formation of secondary phases seems to be unavoidable. The process by which these secondary impurities are formed is studied by analyzing the diffusion and solidstate reactivity of the Bi2O3–Fe2O3 system. Experimental evidence is reported which indicates that the progressive diffusion of Bi3+ ions into the Fe2O3 particles governs the solidstatesynthesis of the perovskite BiFeO3 phase. However a competition is established between the diffusion process which tends to complete the formation of BiFeO3, and the crystallization of stable Bi2Fe4O9 mullite crystals, which tend to block that formation reaction
Seismology of the Sun : Inference of Thermal, Dynamic and Magnetic Field Structures of the Interior
Recent overwhelming evidences show that the sun strongly influences the
Earth's climate and environment. Moreover existence of life on this Earth
mainly depends upon the sun's energy. Hence, understanding of physics of the
sun, especially the thermal, dynamic and magnetic field structures of its
interior, is very important. Recently, from the ground and space based
observations, it is discovered that sun oscillates near 5 min periodicity in
millions of modes. This discovery heralded a new era in solar physics and a
separate branch called helioseismology or seismology of the sun has started.
Before the advent of helioseismology, sun's thermal structure of the interior
was understood from the evolutionary solution of stellar structure equations
that mimicked the present age, mass and radius of the sun. Whereas solution of
MHD equations yielded internal dynamics and magnetic field structure of the
sun's interior. In this presentation, I review the thermal, dynamic and
magnetic field structures of the sun's interior as inferred by the
helioseismology.Comment: To be published in the proceedings of the meeting "3rd International
Conference on Current Developments in Atomic, Molecular, Optical and Nano
Physics with Applications", December 14-16, 2011, New Delhi, Indi
Systematics of pion emission in heavy ion collisions in the 1A GeV regime
Using the large acceptance apparatus FOPI, we study pion emission in the
reactions (energies in GeV/nucleon are given in parentheses): 40Ca+40Ca (0.4,
0.6, 0.8, 1.0, 1.5, 1.93), 96Ru+96Ru (0.4, 1.0, 1.5), 96Zr+96Zr (0.4, 1.0,
1.5), 197Au+197Au (0.4, 0.6, 0.8, 1.0, 1.2, 1.5). The observables include
longitudinal and transverse rapidity distributions and stopping, polar
anisotropies, pion multiplicities, transverse momentum spectra, ratios for
positively and negatively charged pions of average transverse momenta and of
yields, directed flow, elliptic flow. The data are compared to earlier data
where possible and to transport model simulations.Comment: 56 pages,42 figures; to be published in Nuclear Physics
Quality control for the first large areas of triple-GEM chambers for the CMS endcaps
The CMS Collaboration plans to equip the very forward muon system with triple-GEM detectors that can withstand the environment of the High-Luminosity LHC.This project is at the final stages of R&D and moving to production. A large area of several 100 m 2 are to be instrumented with GEM detectors which will be produced in six different sites around the world. A common construction and quality control procedure is required to ensure the performance of each detector.The quality control steps will include optical inspection,cleaning and baking of all materials and parts used to build the detector,leakage current tests of the GEM foils,high voltage tests,gas leak tests of the chambers and monitoring pressures time,gain calibration to know the optimal operation region of the detector,gain uniformity tests, and studying the efficiency,noise and tracking performance of the detectors in a cosmic stand using scintillator
Origin and Evolution of Saturn's Ring System
The origin and long-term evolution of Saturn's rings is still an unsolved
problem in modern planetary science. In this chapter we review the current
state of our knowledge on this long-standing question for the main rings (A,
Cassini Division, B, C), the F Ring, and the diffuse rings (E and G). During
the Voyager era, models of evolutionary processes affecting the rings on long
time scales (erosion, viscous spreading, accretion, ballistic transport, etc.)
had suggested that Saturn's rings are not older than 100 My. In addition,
Saturn's large system of diffuse rings has been thought to be the result of
material loss from one or more of Saturn's satellites. In the Cassini era, high
spatial and spectral resolution data have allowed progress to be made on some
of these questions. Discoveries such as the ''propellers'' in the A ring, the
shape of ring-embedded moonlets, the clumps in the F Ring, and Enceladus' plume
provide new constraints on evolutionary processes in Saturn's rings. At the
same time, advances in numerical simulations over the last 20 years have opened
the way to realistic models of the rings's fine scale structure, and progress
in our understanding of the formation of the Solar System provides a
better-defined historical context in which to understand ring formation. All
these elements have important implications for the origin and long-term
evolution of Saturn's rings. They strengthen the idea that Saturn's rings are
very dynamical and rapidly evolving, while new arguments suggest that the rings
could be older than previously believed, provided that they are regularly
renewed. Key evolutionary processes, timescales and possible scenarios for the
rings's origin are reviewed in the light of tComment: Chapter 17 of the book ''Saturn After Cassini-Huygens'' Saturn from
Cassini-Huygens, Dougherty, M.K.; Esposito, L.W.; Krimigis, S.M. (Ed.) (2009)
537-57
Magnetic Field Amplification in Galaxy Clusters and its Simulation
We review the present theoretical and numerical understanding of magnetic
field amplification in cosmic large-scale structure, on length scales of galaxy
clusters and beyond. Structure formation drives compression and turbulence,
which amplify tiny magnetic seed fields to the microGauss values that are
observed in the intracluster medium. This process is intimately connected to
the properties of turbulence and the microphysics of the intra-cluster medium.
Additional roles are played by merger induced shocks that sweep through the
intra-cluster medium and motions induced by sloshing cool cores. The accurate
simulation of magnetic field amplification in clusters still poses a serious
challenge for simulations of cosmological structure formation. We review the
current literature on cosmological simulations that include magnetic fields and
outline theoretical as well as numerical challenges.Comment: 60 pages, 19 Figure
The First Magnetic Fields
We review current ideas on the origin of galactic and extragalactic magnetic
fields. We begin by summarizing observations of magnetic fields at cosmological
redshifts and on cosmological scales. These observations translate into
constraints on the strength and scale magnetic fields must have during the
early stages of galaxy formation in order to seed the galactic dynamo. We
examine mechanisms for the generation of magnetic fields that operate prior
during inflation and during subsequent phase transitions such as electroweak
symmetry breaking and the quark-hadron phase transition. The implications of
strong primordial magnetic fields for the reionization epoch as well as the
first generation of stars is discussed in detail. The exotic, early-Universe
mechanisms are contrasted with astrophysical processes that generate fields
after recombination. For example, a Biermann-type battery can operate in a
proto-galaxy during the early stages of structure formation. Moreover, magnetic
fields in either an early generation of stars or active galactic nuclei can be
dispersed into the intergalactic medium.Comment: Accepted for publication in Space Science Reviews. Pdf can be also
downloaded from http://canopus.cnu.ac.kr/ryu/cosmic-mag1.pd
- …