52 research outputs found

    Simulating age of air and the distribution of SF6_{6} in the stratosphere with the SILAM model

    Get PDF
    he paper presents a comparative study of age of air (AoA) derived from several approaches: a widely used passive-tracer accumulation method, the SF6 accumulation, and a direct calculation of an ideal-age tracer. The simulations were performed with the Eulerian chemistry transport model SILAM driven with the ERA-Interim reanalysis for 1980–2018. The Eulerian environment allowed for simultaneous application of several approaches within the same simulation and interpretation of the obtained differences. A series of sensitivity simulations revealed the role of the vertical profile of turbulent diffusion in the stratosphere, destruction of SF6_{6} in the mesosphere, and the effect of gravitational separation of gases with strongly different molar masses. The simulations reproduced well the main features of the SF6_{6} distribution in the atmosphere observed by the MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) satellite instrument. It was shown that the apparent very old air in the upper stratosphere derived from the SF6_{6} profile observations is a result of destruction and gravitational separation of this gas in the upper stratosphere and the mesosphere. These processes make the apparent SF6_{6} AoA in the stratosphere several years older than the ideal-age AoA, which, according to our calculations, does not exceed 6–6.5 years. The destruction of SF6_{6} and the varying rate of emission make SF6_{6} unsuitable for reliably deriving AoA or its trends. However, observations of SF6_{6} provide a very useful dataset for validation of the stratospheric circulation in a model with the properly implemented SF6_{6} loss

    Uncertainty of eddy covariance flux measurements over an urban area based on two towers

    Get PDF
    The eddy covariance (EC) technique is the most direct method for measuring the exchange between the surface and the atmosphere in different ecosystems. Thus, it is commonly used to get information on air pollutant and greenhouse gas emissions, and on turbulent heat transfer. Typically an ecosystem is monitored by only one single EC measurement station at a time, making the ecosystem-level flux values subject to random and systematic uncertainties. Furthermore, in urban ecosystems we often have no choice but to conduct the single-point measurements in non-ideal locations such as close to buildings and/or in the roughness sub-layer, bringing further complications to data analysis and flux estimations. In order to tackle the question of how representative a single EC measurement point in an urban area can be, two identical EC systems - measuring momentum, sensible and latent heat, and carbon dioxide fluxes - were installed on each side of the same building structure in central Helsinki, Finland, during July 2013-September 2015. The main interests were to understand the sensitivity of the vertical fluxes on the single measurement point and to estimate the systematic uncertainty in annual cumulative values due to missing data if certain, relatively wide, flow-distorted wind sectors are disregarded. The momentum and measured scalar fluxes respond very differently to the distortion caused by the building structure. The momentum flux is the most sensitive to the measurement location, whereas scalar fluxes are less impacted. The flow distortion areas of the two EC systems (40-150 and 230-340 degrees) are best detected from the mean-wind-normalised turbulent kinetic energy, and outside these areas the median relative random uncertainties of the studied fluxes measured by one system are between 12 % and 28 %. Different gap-filling methods with which to yield annual cumulative fluxes show how using data from a single EC measurement point can cause up to a 12 % (480 g C m(-2)) underestimation in the cumulative carbon fluxes as compared to combined data from the two systems. Combining the data from two EC systems also increases the fraction of usable half-hourly carbon fluxes from 45 % to 69 % at the annual level. For sensible and latent heat, the respective underestimations are up to 5 % and 8 % (0.094 and 0.069 TJ m(-2)). The obtained random and systematic uncertainties are in the same range as observed in vegetated ecosystems. We also show how the commonly used data flagging criteria in natural ecosystems, kurtosis and skewness, are not necessarily suitable for filtering out data in a densely built urban environment. The results show how the single measurement system can be used to derive representative flux values for central Helsinki, but the addition of second system to other side of the building structure decreases the systematic uncertainties. Comparable results can be expected in similarly dense city locations where no large directional deviations in the source area are seen. In general, the obtained results will aid the scientific community by providing information about the sensitivity of EC measurements and their quality flagging in urban areas.Peer reviewe

    Characterization of volatile organic compounds and submicron organic aerosol in a traffic environment

    Get PDF
    Urban air consists of a complex mixture of gaseous and particulate species from anthropogenic and biogenic sources that are further processed in the atmosphere. This study investigated the characteristics and sources of volatile organic compounds (VOCs) and submicron organic aerosol (OA) in a traffic environment in Helsinki, Finland, in late summer. The anthropogenic VOCs (aVOCs; aromatic hydrocarbons) and biogenic VOCs (bVOCs; terpenoids) relevant for secondary-organic-aerosol formation were analyzed with an online gas chromatograph mass spectrometer, whereas the composition and size distribution of submicron particles was measured with a soot particle aerosol mass spectrometer. This study showed that aVOC concentrations were significantly higher than bVOC concentrations in the traffic environment. The largest aVOC concentrations were measured for toluene (campaign average of 1630 ng m−3) and p/m xylene (campaign average of 1070 ng m−3), while the dominating bVOC was α-pinene (campaign average of 200 ng m−3). For particle-phase organics, the campaign-average OA concentration was 2.4 µg m−3. The source apportionment analysis extracted six factors for OA. Three OA factors were related to primary OA sources – traffic (24 % of OA, two OA types) and a coffee roastery (7 % of OA) – whereas the largest fraction of OA (69 %) consisted of oxygenated OA (OOA). OOA was divided into less oxidized semi-volatile OA (SV-OOA; 40 % of OA) and two types of low-volatility OA (LV-OOA; 30 %). The focus of this research was also on the oxidation potential of the measured VOCs and the association between VOCs and OA in ambient air. Production rates of the oxidized compounds (OxPR) from the VOC reactions revealed that the main local sources of the oxidation products were O3 oxidation of bVOCs (66 % of total OxPR) and OH radical oxidation of aVOCs and bVOCs (25 % of total OxPR). Overall, aVOCs produced a much smaller portion of the oxidation products (18 %) than bVOCs (82 %). In terms of OA factors, SV-OOA was likely to originate from biogenic sources since it correlated with an oxidation product of monoterpene, nopinone. LV-OOA consisted of highly oxygenated long-range or regionally transported OA that had no correlation with local oxidant concentrations as it had already spent several days in the atmosphere before reaching the measurement site. In general, the main sources were different for VOCs and OA in the traffic environment. Vehicle emissions impacted both VOC and OA concentrations. Due to the specific VOCs attributed to biogenic emissions, the influence of biogenic emissions was more clearly detected in the VOC concentrations than in OA. In contrast, the emissions from the local coffee roastery had a distinctive mass spectrum for OA, but they could not be seen in the VOC measurements due to the measurement limitations for the large VOC compounds. Long-range transport increased the OA concentration and oxidation state considerably, while its effect was observed less clearly in the VOC measurements due to the oxidation of most VOC in the atmosphere during the transport. Overall, this study revealed that in order to properly characterize the impact of different emission sources on air quality, health, and climate, it is of importance to describe both gaseous and particulate emissions and understand how they interact as well as their phase transfers in the atmosphere during the aging process.</p

    Digital transformation of health and care to sustain Planetary Health : The MASK proof-of-concept for airway diseases-POLLAR symposium under the auspices of Finland's Presidency of the EU, 2019 and MACVIA-France, Global Alliance against Chronic Respiratory Diseases (GARD, WH0) demonstration project, Reference Site Collaborative Network of the European Innovation Partnership on Active and Healthy Ageing

    Get PDF
    In December 2019, a conference entitled "Europe That Protects: Safeguarding Our Planet, Safeguarding Our Health" was held in Helsinki. It was co-organized by the Finnish Institute for Health and Welfare, the Finnish Environment Institute and the European Commission, under the auspices of Finland's Presidency of the EU. As a side event, a symposium organized as the final POLLAR (Impact of air POLLution on Asthma and Rhinitis) meeting explored the digital transformation of health and care to sustain planetary health in airway diseases. The Finnish Allergy Programme collaborates with MASK (Mobile Airways Sentinel NetworK) and can be considered as a proof-of-concept to impact Planetary Health. The Good Practice of DG Sante (The Directorate-General for Health and Food Safety) on digitally-enabled, patient-centred care pathways is in line with the objectives of the Finnish Allergy Programme. The ARIACARE-Digital network has been deployed in 25 countries. It represents an example of the digital cross-border exchange of real-world data and experience with the aim to improve patient care. The integration of information technology tools for climate, weather, air pollution and aerobiology in mobile Health applications will enable the development of an alert system. Citizens will thus be informed about personal environmental threats, which may also be linked to indicators of Planetary Health and sustainability. The digital transformation of the public health policy was also proposed, following the experience of the Agency for Health Quality and Assessment of Catalonia (AQuAS).Peer reviewe

    Bioaerosols in the atmosphere at two sites in Northern Europe in spring 2021: Outline of an experimental campaign

    Get PDF
    A coordinated observational and modelling campaign targeting biogenic aerosols in the air was performed during spring 2021 at two locations in Northern Europe: Helsinki (Finland) and Siauliai (Lithuania), approximately 500 km from each other in north-south direction. The campaign started on March 1, 2021 in Siauliai (12 March in Helsinki) and continued till mid-May in Siauliai (end of May in Helsinki), thus recording the transition of the atmospheric biogenic aerosols profile from winter to summer.The observations included a variety of samplers working on different principles. The core of the program was based on 2- and 2.4--hourly sampling in Helsinki and Siauliai, respectively, with sticky slides (Hirst 24-h trap in Helsinki, Rapid-E slides in Siauliai). The slides were subsequently processed extracting the DNA from the collected aerosols, which was further sequenced using the 3-rd generation sequencing technology. The core sampling was accompanied with daily and daytime sampling using standard filter collectors. The hourly aerosol concentrations at the Helsinki monitoring site were obtained with a Poleno flow cytometer, which could recognize some of the aerosol types.The sampling campaign was supported by numerical modelling. For every sample, SILAM model was applied to calculate its footprint and to predict anthropogenic and natural aerosol concentrations, at both observation sites.The first results confirmed the feasibility of the DNA collection by the applied techniques: all but one delivered sufficient amount of DNA for the following analysis, in over 40% of the cases sufficient for direct DNA sequencing without the PCR step. A substantial variability of the DNA yield has been noticed, generally not following the diurnal variations of the total-aerosol concentrations, which themselves showed variability not related to daytime. An expected upward trend of the biological material amount towards summer was observed but the day-to-day variability was large.The campaign DNA analysis produced the first high-resolution dataset of bioaerosol composition in the North-European spring. It also highlighted the deficiency of generic DNA databases in applications to atmospheric biota: about 40% of samples were not identified with standard bioinformatic methods.</p

    unprecedented warming demands unprecedented action

    Get PDF
    Funding Information: We thank the global Lancet Countdown and the Wellcome Trust (grant number 209734/Z/17/Z) for their financial and technical support. We acknowledge funding from the European Union's Horizon Europe research and innovation programme under grant agreement number 101057131 (Horizon Europe project CATALYSE) and grant agreement number 101057554 (Horizon Europe project IDAlert). For the development of the Leishmaniasis indicator, we acknowledge support from Climate Monitoring and Decision Support Framework for Sand Fly-borne Disease Detection and Mitigation with Cost-benefit and Climate Policy Measures (CLIMOS; 101057690) and UK Research and Innovation (10038150 and 10039289). We thank the EU Climate Change and Health Cluster, which includes the CATALYSE, IDAlert, and CLIMOS grants. SD and EJZR report support from COST Action PROCLIAS (PROcess-based models for CLimate Impact Attribution across Sectors), funded by COST (European Cooperation in Science and Technology). MSp and JP report funding from the Horizon Europe project SYLVA (grant 101086109) and Academy of Finland project ALL-IMPRESS, grant 329215. MSp reports funding from the Wellcome Trust (205212/Z/16/Z & 225318/Z/22/Z). RH, MSo, and RK report funding from HEATCOST (Academy of Finland grant number 334798), Horizon projects FirEUrisk (101003890), EXHAUSTION (grant 820655), and ENBEL (grant 101003966).proofinpres
    corecore