20 research outputs found

    Higgs Physics at the CLIC Electron-Positron Linear Collider

    Get PDF
    The Compact Linear Collider (CLIC) is an option for a future e+e- collider operating at centre-of-mass energies up to 3 TeV, providing sensitivity to a wide range of new physics phenomena and precision physics measurements at the energy frontier. This paper is the first comprehensive presentation of the Higgs physics reach of CLIC operating at three energy stages: sqrt(s) = 350 GeV, 1.4 TeV and 3 TeV. The initial stage of operation allows the study of Higgs boson production in Higgsstrahlung (e+e- -> ZH) and WW-fusion (e+e- -> Hnunu), resulting in precise measurements of the production cross sections, the Higgs total decay width Gamma_H, and model-independent determinations of the Higgs couplings. Operation at sqrt(s) > 1 TeV provides high-statistics samples of Higgs bosons produced through WW-fusion, enabling tight constraints on the Higgs boson couplings. Studies of the rarer processes e+e- -> ttH and e+e- -> HHnunu allow measurements of the top Yukawa coupling and the Higgs boson self-coupling. This paper presents detailed studies of the precision achievable with Higgs measurements at CLIC and describes the interpretation of these measurements in a global fit.The Compact Linear Collider (CLIC) is an option for a future e+e{\mathrm{e}^{+}}{\mathrm{e}^{-}} collider operating at centre-of-mass energies up to 3TeV3\,\text {TeV} , providing sensitivity to a wide range of new physics phenomena and precision physics measurements at the energy frontier. This paper is the first comprehensive presentation of the Higgs physics reach of CLIC operating at three energy stages: s=350GeV\sqrt{s} = 350\,\text {GeV} , 1.4 and 3TeV3\,\text {TeV} . The initial stage of operation allows the study of Higgs boson production in Higgsstrahlung ( e+eZH{\mathrm{e}^{+}}{\mathrm{e}^{-}} \rightarrow {\mathrm{Z}} {\mathrm{H}} ) and WW{\mathrm{W}} {\mathrm{W}} -fusion ( e+eHν ⁣eνˉ ⁣e{\mathrm{e}^{+}}{\mathrm{e}^{-}} \rightarrow {\mathrm{H}} {{\nu }}_{\!\mathrm{e}} {\bar{{\nu }}}_{\!\mathrm{e}} ), resulting in precise measurements of the production cross sections, the Higgs total decay width ΓH\varGamma _{{\mathrm{H}}} , and model-independent determinations of the Higgs couplings. Operation at s>1TeV\sqrt{s} > 1\,\text {TeV} provides high-statistics samples of Higgs bosons produced through WW{\mathrm{W}} {\mathrm{W}} -fusion, enabling tight constraints on the Higgs boson couplings. Studies of the rarer processes e+ettˉH{\mathrm{e}^{+}}{\mathrm{e}^{-}} \rightarrow \mathrm{t} {\bar{\mathrm{t}}} {\mathrm{H}} and e+eHHν ⁣eνˉ ⁣e{\mathrm{e}^{+}}{\mathrm{e}^{-}} \rightarrow {\mathrm{H}} {\mathrm{H}} {{\nu }}_{\!\mathrm{e}} {\bar{{\nu }}}_{\!\mathrm{e}} allow measurements of the top Yukawa coupling and the Higgs boson self-coupling. This paper presents detailed studies of the precision achievable with Higgs measurements at CLIC and describes the interpretation of these measurements in a global fit

    Anti-inflammatory agents in the treatment of bipolar depression: a systematic review and meta-analysis

    Get PDF
    OBJECTIVE: Inflammation has been implicated in the risk, pathophysiology, and progression of mood disorders and, as such, has become a target of interest in the treatment of bipolar disorder (BD). Therefore, the objective of the current qualitative and quantitative review was to determine the overall antidepressant effect of adjunctive anti-inflammatory agents in the treatment of bipolar depression. METHODS: Completed and ongoing clinical trials of anti-inflammatory agents for BD published prior to 15 May 15 2015 were identified through searching the PubMed, Embase, PsychINFO, and Clinicaltrials.gov databases. Data from randomized controlled trials (RCTs) assessing the antidepressant effect of adjunctive mechanistically diverse anti-inflammatory agents were pooled to determine standard mean differences (SMDs) compared with standard therapy alone. RESULTS: Ten RCTs were identified for qualitative review. Eight RCTs (n = 312) assessing adjunctive nonsteroidal anti-inflammatory drugs (n = 53), omega-3 polyunsaturated fatty acids (n = 140), N-acetylcysteine (n = 76), and pioglitazone (n = 44) in the treatment of BD met the inclusion criteria for quantitative analysis. The overall effect size of adjunctive anti-inflammatory agents on depressive symptoms was -0.40 (95% confidence interval -0.14 to -0.65, p = 0.002), indicative of a moderate and statistically significant antidepressant effect. The heterogeneity of the pooled sample was low (I² = 14%, p = 0.32). No manic/hypomanic induction or significant treatment-emergent adverse events were reported. CONCLUSIONS: Overall, a moderate antidepressant effect was observed for adjunctive anti-inflammatory agents compared with conventional therapy alone in the treatment of bipolar depression. The small number of studies, diversity of agents, and small sample sizes limited interpretation of the current analysis
    corecore