48 research outputs found

    Duality in the Th17-Treg developmental decision

    Get PDF
    Each of the effector CD4 T-cell lineages - Th1, Th2, and the more recently identified Th17 - arises from pluripotent naïve precursors whose developmental fate is largely controlled by cytokines that act in concert with antigenic signals. Remarkably, development of the Th17 lineage has been linked to that of regulatory T cells, which obviate or downregulate Th17 responses to preserve immune homeostasis, through a shared requirement for the cytokine transforming growth factor-beta. Several new studies offer insights into the mechanism whereby the precursors of these subsets are directed into distinct lineages

    Notch Simultaneously Orchestrates Multiple Helper T Cell Programs Independently of Cytokine Signals

    Get PDF
    SummaryTwo models are proposed to explain Notch function during helper T (Th) cell differentiation. One argues that Notch instructs one Th cell fate over the other, whereas the other posits that Notch function is dictated by cytokines. Here we provide a detailed mechanistic study investigating the role of Notch in orchestrating Th cell differentiation. Notch neither instructed Th cell differentiation nor did cytokines direct Notch activity, but instead, Notch simultaneously regulated the Th1, Th2, and Th17 cell genetic programs independently of cytokine signals. In addition to regulating these programs in both polarized and nonpolarized Th cells, we identified Ifng as a direct Notch target. Notch bound the Ifng CNS-22 enhancer, where it synergized with Tbet at the promoter. Thus, Notch acts as an unbiased amplifier of Th cell differentiation. Our data provide a paradigm for Notch in hematopoiesis, with Notch simultaneously orchestrating multiple lineage programs, rather than restricting alternate outcomes

    Modular Utilization of Distal cis-Regulatory Elements Controls Ifng Gene Expression in T Cells Activated by Distinct Stimuli

    Get PDF
    Distal cis-regulatory elements play essential roles in the T lineage-specific expression of cytokine genes. We have mapped interactions of three transacting factors – NF-κB, STAT4 and T-bet – with cis elements in the Ifng locus. We find that RelA is critical for optimal Ifng expression and is differentially recruited to multiple elements contingent upon T cell receptor (TCR) or interleukin-12 (IL-12) plus IL-18 signaling. RelA recruitment to at least four elements is dependent on T-bet-dependent remodeling of the Ifng locus and co-recruitment of STAT4. STAT4 and NF-κB therefore cooperate at multiple cis elements to enable NF-κB–dependent enhancement of Ifng expression. RelA recruitment to distal elements was similar in Th1 and Tc1 effector cells, although T-bet was dispensable in CD8 effectors. These results support a model of Ifng regulation in which distal cis-regulatory elements differentially recruit key transcription factors in a modular fashion to initiate gene transcription induced by distinct activation signals

    TH17 cells require ongoing classic IL-6 receptor signaling to retain transcriptional and functional identity

    Get PDF
    Acting in concert with TGF-b, IL-6 signaling induces Th17 cell development by programming Th17-related genes via STAT3. A role for IL-6 signaling beyond the inductive phase of Th17 cell development has not been defined, as IL-23 signaling downstream of Th17 cell induction also activates STAT3 and is thought responsible for Th17 cell maintenance. Here, we find that IL-6 signaling is required for both induction and maintenance of Th17 cells; IL-6Ra–deficient Th17 cells rapidly lost their Th17 phenotype and did not cause disease in two models of colitis. Cotransfer of WT Th17 cells with IL-6Ra–deficient Th17 cells induced colitis but was unable to rescue phenotype loss of the latter. High IL-6 in the colon promoted classic, or cis, rather than trans receptor signaling that was required for maintenance of Th17 cells. Thus, ongoing classic IL6 signaling underpins the Th17 program and is required for Th17 cell maintenance and function

    Contrasting roles for all-trans retinoic acid in TGF-β–mediated induction of Foxp3 and Il10 genes in developing regulatory T cells

    Get PDF
    Extrathymic induction of regulatory T (T reg) cells is essential to the regulation of effector T cell responses in the periphery. In addition to Foxp3, T reg cell expression of suppressive cytokines, such as IL-10, is essential for peripheral tolerance, particularly in the intestines. TGF-β has been shown to induce expression of Foxp3 as well as IL10 and the vitamin A metabolite; all-trans retinoic acid (RA [at-RA]) has been found to enhance the former. We report that in contrast to its enhancement of TGF-β–mediated Foxp3 induction, at-RA potently inhibits the TGF-β–mediated induction of Il10 in naive CD4 T cells. Thus, mucosal DC subsets that are active producers of at-RA inhibit induction of Il10 in naive CD4 T cells while promoting induction of Foxp3. Accordingly, mice with vitamin A deficiency have increased numbers of IL-10–competent T reg cells. Activation of DCs by certain Toll-like receptors (TLRs), particularly TLR9, suppresses T cell induction of Foxp3 and enables induction of Il10. Collectively, our data indicate that at-RA has reciprocal effects on the induction of Foxp3 and Il10 in developing CD4+ T reg cells and suggest that TLR9-dependent inhibition of at-RA production by antigen-presenting cells might represent one mechanism to promote the development of IL-10–expressing T cells

    The VIMOS VLT Deep Survey: Computing the two point correlation statistics and associated uncertainties

    Get PDF
    We are presenting in this paper a detailed account of the methods used to compute the three-dimensional two-point galaxy correlation function in the VIMOS-VLT deep survey (VVDS). We investigate how instrumental selection effects and observational biases affect the measurements and identify the methods to correct them. We quantify the accuracy of our correction method using an ensemble of fifty mock galaxy surveys generated with the GalICS semi-analytic model of galaxy formation which incorporate the same selection biases and tiling strategy as the real data does. We demonstrate that we are able to recover the real-space two-point correlation function xi(s) to an accuracy better than 10% on scales larger than 1 h^{-1} Mpc, and of about 30% on scales below 1 h^{-1} Mpc, with the sampling strategy used for the first epoch VVDS data. The projected correlation function w_p(r_p) is recovered with an accuracy better than 10% on all scales 0.1 <= r <= 10 h^{-1} Mpc. There is a tendency for a small but systematic under-estimate of the correlation length derived from w_p(r_p) of 6% on average, remaining after our correction process. The large number of simulated surveys allows us to provide a reliable estimate of the cosmic error on the measurements of the correlation length r_0, of about 15-20% for the first epoch VVDS observation (Le Fevre et al.2004, astro-ph/0409133). The error estimation and measurement techniques outlined in this paper are being used in several studies which investigate in detail the clustering properties of galaxies in the VVDS data.Comment: 16 pages, accepted 10-Mar-05 in A&

    Predictors of Treatment Attrition Among an Outpatient Clinic Sample of Youths With Clinically Significant Anxiety

    Get PDF
    Predictors of treatment attrition were examined in a sample of 197 youths (ages 5–18) with clinically-significant symptoms of anxiety seeking psychotherapy services at a community-based outpatient mental health clinic (OMHC). Two related definitions of attrition were considered: (a) clinician-rated dropout (CR), and (b) CR dropout qualified by phase of treatment (pre, early, or late phases) (PT). Across both definitions, rates of attrition in the OMHC sample were higher than those for anxious youths treated in randomized controlled trials, and comorbid depression symptoms predicted dropout, with a higher rate of depressed youths dropping out later in treatment (after 6 sessions). Using the PT definition, minority status also predicted attrition, with more African-American youths lost pre-treatment. Other demographic (age, gender, single parent status) and clinical (externalizing symptoms, anxiety severity) characteristics were not significantly associated with attrition using either definition. Implications for services for anxious youths in public service settings are discussed. Results highlight the important role of comorbid depression in the treatment of anxious youth and the potential value of targeted retention efforts for ethnic minority families early in the treatment process

    ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries

    Get PDF
    This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of "big data" (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here, we summarize the first decade of ENIGMA's activities and ongoing projects, and describe the successes and challenges encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial factors

    The emerging role of AMPK in the regulation of breathing and oxygen supply

    Get PDF
    Regulation of breathing is critical to our capacity to accommodate deficits in oxygen availability and demand during, for example, sleep and ascent to altitude. It is generally accepted that a fall in arterial oxygen increases afferent discharge from the carotid bodies to the brainstem and thus delivers increased ventilatory drive, which restores oxygen supply and protects against hypoventilation and apnoea. However, the precise molecular mechanisms involved remain unclear. We recently identified as critical to this process the AMP-activated protein kinase (AMPK), which is key to the cell-autonomous regulation of metabolic homoeostasis. This observation is significant for many reasons, not least because recent studies suggest that the gene for the AMPK-α1 catalytic subunit has been subjected to natural selection in high-altitude populations. It would appear, therefore, that evolutionary pressures have led to AMPK being utilized to regulate oxygen delivery and thus energy supply to the body in the short, medium and longer term. Contrary to current consensus, however, our findings suggest that AMPK regulates ventilation at the level of the caudal brainstem, even when afferent input responses from the carotid body are normal. We therefore hypothesize that AMPK integrates local hypoxic stress at defined loci within the brainstem respiratory network with an index of peripheral hypoxic status, namely afferent chemosensory inputs. Allied to this, AMPK is critical to the control of hypoxic pulmonary vasoconstriction and thus ventilation–perfusion matching at the lungs and may also determine oxygen supply to the foetus by, for example, modulating utero-placental blood flow
    corecore