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REVIEW ARTICLE
The emerging role of AMPK in the regulation of breathing and oxygen supply
A. Mark Evans*1, Amira D. Mahmoud*, Javier Moral-Sanz* and Sandy Hartmann*
*Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, U.K.

Regulation of breathing is critical to our capacity to accommodate
deficits in oxygen availability and demand during, for example,
sleep and ascent to altitude. It is generally accepted that a
fall in arterial oxygen increases afferent discharge from the
carotid bodies to the brainstem and thus delivers increased
ventilatory drive, which restores oxygen supply and protects
against hypoventilation and apnoea. However, the precise
molecular mechanisms involved remain unclear. We recently
identified as critical to this process the AMP-activated protein
kinase (AMPK), which is key to the cell-autonomous regulation
of metabolic homoeostasis. This observation is significant
for many reasons, not least because recent studies suggest
that the gene for the AMPK-α1 catalytic subunit has been
subjected to natural selection in high-altitude populations. It
would appear, therefore, that evolutionary pressures have led
to AMPK being utilized to regulate oxygen delivery and thus
energy supply to the body in the short, medium and longer

term. Contrary to current consensus, however, our findings
suggest that AMPK regulates ventilation at the level of the
caudal brainstem, even when afferent input responses from the
carotid body are normal. We therefore hypothesize that AMPK
integrates local hypoxic stress at defined loci within the brainstem
respiratory network with an index of peripheral hypoxic status,
namely afferent chemosensory inputs. Allied to this, AMPK is
critical to the control of hypoxic pulmonary vasoconstriction
and thus ventilation–perfusion matching at the lungs and may
also determine oxygen supply to the foetus by, for example,
modulating utero-placental blood flow.

Key words: AMP-activated protein kinase (AMPK), apnoea,
Ca2 + –calmodulin-activated kinase kinase-β (CaMKK-β), hyp-
oxia, liver kinase B1 (LKB1), pulmonary, ventilation.

INTRODUCTION

Regulated oxygen supply is key to the maintenance of oxidative
phosphorylation and thus cellular energy status in mammals,
not least because of the limited capacity for cellular oxygen
storage relative to the extensive reserves of other substrates.
It was proposed, therefore, that natural selection may have
employed AMP-activated protein kinase (AMPK) to co-ordinate
system-level adjustments of whole-body function in response
to oxygen deficits in animals [1]. Consistent with this view,
recent studies on high-altitude Andean populations have shown
that the gene for the AMPK-α1 subunit (PRKAA1) has
been influenced by natural selection through single nucleotide
polymorphisms [2]. Confirmation of a role for AMPK in oxygen
delivery has now been provided by conclusive experimental
evidence that, in addition to its well-recognized capacity as
a regulator of cell-autonomous pathways of energy supply
[3], AMPK is essential to the regulation of breathing during
hypoxia and thus oxygen and energy distribution to the
body [4].

FRAGMENTS FROM THE LIBRARIES OF BABYLON

The AMP-activated protein kinase

AMPK is a cellular energy sensor that acts to maintain energy
homoeostasis. It exists as heterotrimers comprising one of two
catalytic α subunits, in combination with one each of the

two β and three γ regulatory subunits, which together may
form at least 12 different heterotrimeric subunit combinations
[5,6]. In this respect it is important to note that evidence is
now emerging to suggest that different subunit combinations
may be selected by a given cell type, that each combination
may exhibit different sensitivities to activation by AMP and
ADP and thus metabolic stresses, and that each may selectively
phosphorylate and regulate a different spectrum of target
proteins [8].

AMPK activities are exquisitely coupled to mitochondrial
metabolism through changes in the cellular AMP/ATP and
ADP/ATP ratios (Figure 1). There are four nucleotide-binding
sites (CBS repeats) on the γ subunit, of which only sites
designated 1, 3 and 4 may ever be occupied [8]. Binding of
AMP to the γ subunit causes a 10-fold increase in AMPK
activity by allosteric activation, with further activation of up
to 100-fold generated by binding of either AMP or ADP
through their promotion of phosphorylation and inhibition of
dephosphorylation at Thr172 on the α subunit; each of these effects
is opposed by ATP [9,10]. Thr172 is primarily phosphorylated by
the tumour-suppressor kinase liver kinase B1 (LKB1), which
appears to be constitutively active but phosphorylates AMPK
more rapidly when AM(D)P is bound to the γ subunit [11]. There
is also an alternative Ca2 + -dependent activation mechanism, the
calmodulin-dependent protein kinase Ca2 + –calmodulin-activated
kinase kinase-β (CaMKK-β), which phosphorylates Thr172 and
thus activates AMPK in an AMP-independent manner [5,6,12].
Contrary to previous proposals [13], however, there is little

Abbreviations: AICAR, 5-amino-4-imidazolecarboxamide riboside; AMPK, AMP-activated protein kinase; AP, area postrema; COX, cytochrome c oxidase;
CaMKK-β, Ca2 + –calmodulin-activated kinase kinase-β; LKB1, liver kinase B1; NTS, nucleus tractus solitarius; Olfr78, olfactory receptor 78; rCPG,
respiratory central pattern generator; ROS, reactive oxygen species.
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Figure 1 Regulation of the AMP-activated protein kinase

(1) AMPK is constitutively phosphorylated (AMPK-P) by LKB1. However when ATP is bound to
AMPK, dephosphorylation by protein phosphatase 2C (PP2C) is promoted and AMPK remains
deactivated (AMPK). Metabolic stresses, such as hypoxia, increase the AM(D)P/ATP ratio and
promote displacement of ATP by AMP, and to a lesser extent by ADP, from three sites on the
AMPK γ subunit. Binding of AMP or ADP to the γ subunit may promote phosphorylation
by LKB1 and at the same time (2) inhibit dephosphorylation by PP2C. (3) AMP, but not ADP,
binding also promotes further allosteric activation of AMPK. These three mechanisms deliver
AMPK activation in response to metabolic stresses. In addition, AMPK can be activated in a
Ca2 + -dependent manner through CaMKK-β , which phosphorylates the same γ subunit site as
LKB1. Figure adapted from [179]: Hardie, D.G., Salt, I.P., Hawley, S.A. and Davies, S.P. (1999)
AMP-activated protein kinase: an ultrasensitive system for monitoring cellular energy charge.
Biochem. J. 338, 717–722.

evidence to support the view that AMPK is directly activated
by reactive oxygen species (ROS) [14,15]. Once activated the
classical action of AMPK is to phosphorylate targets that switch
off non-essential anabolic processes that consume ATP and
switch on catabolic pathways that generate ATP [12], thereby
compensating for deficits in ATP supply via, for example,
reductions in mitochondrial oxidative-phosphorylation.

Intriguingly, in the context of the present discussion, the
genes encoding the α and γ subunits of the AMPK orthologue
of yeast Saccharomyces cerevisiae (SNF1 and SNF4) support
colony-level metabolic adaptation [16–19]. For example, in a high
glucose environment, yeast initially grow rapidly using glycolytic
metabolism to generate ATP, but when glucose runs low the
growth rate decreases as yeast undergo diauxic shift towards
greater reliance on mitochondrial oxidative phosphorylation. This
adaptation to deficits in substrate supply is blocked in yeast
with snf1 or snf4 mutations that are unable to support the
diauxic shift [16,17,20]; i.e. they can only grow on a source of
glucose.

In an evolutionary context, this observation raised the
possibility that natural selection may have deployed AMPK
to govern the adaptation of animals to deficits in oxygen and
thus energy supply at both the cellular and whole-body level.
Moreover, the fact that AMPK is a serine/threonine kinase
suggested the capacity for regulation of processes outside of
metabolism such as ion channel activity, which our findings
[21–24] and those of others have since confirmed. For example,
AMPK may phosphorylate and ‘inactivate’ the pore-forming α
subunit of multiple calcium-activated potassium channels (KCa1.1
and KCa3.1) [22,25], the voltage-gated potassium channel Kv1.5
[24,26,27] and the ATP-inhibited KATP channel (Kir6.2) [28], or
may phosphorylate and ‘activate’ the α subunit of the voltage-
gated potassium channel Kv2.1 [21]. AMPK has the potential to
thus increase or decrease cell excitability, in a manner determined
by the cell-specific expression of members of the ion channel

superfamily, and thereby deliver system-level control of whole-
body metabolic status [1].

We have now provided conclusive evidence that the
LKB1/AMPK signalling pathway does indeed play a critical
role in modulating the delivery of oxygen to the body [4,29], in
addition to its well-recognized role in regulating cell-autonomous
pathways of energy supply [3]. Perhaps most significantly,
our data suggest that LKB1/AMPK signalling pathways act
not only to optimize ventilation during hypoxia, but also to
oppose respiratory depression during hypoxia and may thus resist
hypoventilation and apnoea [4]. However, the locus at which
AMPK co-ordinates the hypoxic ventilatory response was not
as one would have predicted.

Regulation of rhythmic ventilation

That ventilatory adjustments are critical to the body’s capacity
to accommodate variations in oxygen demand and supply
during sleep and ascent to altitude is exemplified by the fact
that adaptation of mammals to hypoxia at altitude is initially
characterized by progressive increases in ventilatory drive, which
partially restore arterial PO2 and protect against apnoea [30].
Ventilatory movements are delivered by motor neuronal pathways
that are informed by respiratory central pattern generators
(rCPGs), which are distributed bilaterally in the pons and ventral
medulla of the brainstem (Figure 2) [31]. These semi-autonomous
neural networks comprise core circuits of excitatory and inhibitory
interneurons that deliver rhythmic patterns of activity [32], and
confer a set-point about which respiratory rhythm is continuously
modulated through the integration of inputs from those central
[32,33] and peripheral chemosensors [34] which monitor oxygen,
carbon dioxide and pH. It is generally accepted that the carotid
bodies, which reside at the bifurcation of the common carotid
artery, represent the primary peripheral chemoreceptors [34]
and that the acute hypoxic ventilatory response is delivered by
increased afferent discharge from the carotid bodies to the rCPGs
via, in great part, catecholaminergic networks within the caudal
brainstem (Figure 3) [35,36].

To assess the role of LKB1 and AMPK in this process, we used
the tyrosine hydroxylase promoter to drive deletion of AMPK-
α1 and -α2 genes in all catecholaminergic cells [4], including
therein type I cells of the carotid and aortic bodies [34,37], and
downstream neurons within the brainstem respiratory network
that relay afferent inputs to the rCPGs [38]. Both LKB1 and AMPK
deletion precipitated pronounced ventilatory dysfunction during
hypoxia [4,29] that was characterized by marked attenuation
of the hypoxic ventilatory response, and which ultimately led
to hypoventilation rather than hyperventilation and frequent
prolonged apnoeas.

Upon hypoxia at altitude or during sleep, activation of
LKB1/AMPK signalling pathways may therefore aid appropriate
ventilatory adjustments and thus ‘protect’ against acute
ventilatory instability [30], although deficiency of either may
confer greater susceptibility to disordered breathing. In this
respect it is notable that, of the two available α subunits, selective
loss of the AMPK-α1 catalytic subunit was the primary precipitant
of ventilatory dysfunction during hypoxia [4]; consistent with
the finding that natural selection in high-altitude (Andean)
populations has led to single nucleotide polymorphisms in
PRKAA1 [2].

Given that it is widely accepted that the carotid bodies drive
the entire ventilatory response to a fall in arterial PO2, we had
always presumed that this organ would be the primary site of
AMPK action in this respect. Not for the first time, however, the
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Figure 2 Functional compartments of the brainstem ventilatory respiratory
columns

Dorsal view of the brainstem illustrating the functional compartments within the ventilatory
respiratory column. KF, Kölliker-Fuse nucleus; PB, parabrachial nuclei; NA, noradrenergic A5
area; RTN, retrotrapezoid nucleus; PGi, paragigantocellular reticular nucleus; BötC, Bötzinger
complex; preBotC, pre-Bötzinger complex; rVRG, rostral ventral respiratory group; cVRG, caudal
ventral respiratory group. Image adapted from [180]: Rekling, J.C. and Feldman, J.L. (1998)
PreBotzinger complex and pacemaker neurons: hypothesized site and kernel for respiratory
rhythm generation. Annu. Rev. Physiol. 60, 385–405.

order in which evolution may have influenced the development
and thus organization of body systems appears, it now seems,
counterintuitive.

A PINCH OF PTOLEMY – AMPK AND THE CAROTID BODY

The carotid bodies were identified as sensory organs by De
Castro in 1928 [39], after which Heymans and Bouckaert [40]
established that they mediated hyperventilation in response to a
fall in arterial PO2 and thus defined these organs as the primary
peripheral arterial chemoreceptors. The carotid body type I
(glomus) cells underpin chemosensory activity [41], when upon
exposure to hypoxia and/or hypercapnia they release a variety of
neurotransmitters which elicit increases in afferent fibre discharge
along the carotid sinus nerve and thereby govern cardiorespiratory
reflexes that elicit corrective changes in ventilation [42–45].
Recent evidence now suggests that the aortic bodies, which are
located at the aortic arch, are similarly activated during hypoxia
and/or hypercapnia and may also contribute to the hypoxic
ventilatory response [37]. Type I cells of the carotid and aortic
bodies therefore define a class of oxygen-sensing cells, in which
the PO2 at which mitochondrial oxidative phosphorylation is

Figure 3 The hypoxia-responsive respiratory network from carotid body to
brainstem

The hypoxia-responsive respiratory network spans the catecholaminergic cells of the carotid
body type I cells, dorsal A2, C2 and ventral A1 and C1 neurons of the caudal brainstem,
which are located at the AP, NTS and the ventrolateral medulla. The respiratory central
pattern generators comprise: RTN, retrotrapezoid nucleus; BötC, Bötzinger complex; preBotC,
pre-Bötzinger complex; rVRG, rostral ventral respiratory group; cVRG, caudal ventral respiratory
group.

inhibited during hypoxia (�60 mmHg oxygen) is higher than in
other cell types [46–48]. Once this threshold is breached hypoxia-
induced changes in cell activity increase in a manner related to
the degree of hypoxia [46,49], that is until these activities begin
to fail under near anoxic conditions (<2% oxygen) [50]; at this
point mitochondrial oxidative phosphorylation is inhibited in cells
that do not function to monitor oxygen supply [47]. In short, all
oxygen-sensing cells function to respond to deficits in oxygen
supply over the physiological range of PO2.

Mitochondria underpin hypoxia-response coupling in carotid body
type I cells

A significant body of evidence now argues in favour of the
view that type I cell activation during hypoxia is consequent
to the inhibition of mitochondrial function. In retrospect the
initial clue to this fact was provided by the seminal work of
Heymans and Bouckaert [40], in that they demonstrated that
cyanide mimicked and occluded the activation by hypoxia of
the carotid body. However, the first direct evidence was obtained
through the analysis of the respiratory chain redox status [51].
By relating outcomes to afferent sinus nerve discharge during
hypoxia, it was shown that an increase in the NAD(P)H/NAD(P)+

ratio correlated with changes in afferent nerve activity over the
physiological range of oxygen levels. At the time it was proposed
that mitochondria of most cells may utilize a high-affinity (i.e.
normal) cytochrome a3, whereas the cytochrome a3 incorporated
in mitochondria of oxygen-sensing cells may have a low affinity
for oxygen. Consistent with this hypothesis, recent investigations
have demonstrated that NDUFA4L2 [52] and COX4I2 [53,54],
two nuclear-encoded atypical subunits of the mitochondrial
electron transport chain, are constitutively expressed in carotid
body type I cells under normoxia [55]. This contrasts with a
number of other cell types where NDUFA4L2 and COX4I2
expression is ordinarily low, but is increased during prolonged
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hypoxia [52–54]. Both NDUFA4L2 and COX4I2 reduce the
capacity for mitochondrial oxygen consumption and act to limit
mitochondrial ROS production during hypoxia, by reducing the
activity of complex I and cytochrome c oxidase respectively. In
this respect it is interesting to note that allosteric modulation of
cytochrome c oxidase (COX) is delivered by COX4 in a subtype-
specific manner, with COX4I1 but not COX4I2 conferring COX
inhibition by ATP [54,56], i.e. in carotid body type I cells it
seems unlikely that the rate of oxygen consumption and thus
ATP supply via mitochondrial oxidative phosphorylation will
increase during hypoxia as ATP levels fall [53,56–58]. It has been
suggested, therefore, that constitutive expression of NDUFA4L2
and COX4I2 by carotid body type I cells might determine the
affinity of their mitochondria for oxygen and thus confer, in part,
the capacity of these cells to monitor changes in arterial oxygen
supply. Intriguingly, COX4I2 is also constitutively expressed by
pulmonary arterial myocytes [58,59] and neurons of the central
nervous system [56], which may in some instances also function
to monitor oxygen supply (see below).

That mitochondria may be the site of oxygen-sensing within
type I cells of the carotid body is supported by the fact that, in
addition to cyanide, all inhibitors and uncouplers of mitochondrial
electron transport both mimic and occlude the effects of hypoxia
[60]. Moreover, recent studies have shown that conditional
deletion in type I cells of Ndufs2, a mitochondrial complex I
gene that participates in ubiquinone binding, blocks carotid body
activation during hypoxia [61].

ATP, LKB1, AMPK and hypoxia-response coupling in carotid body
type I cells

What remains open to debate is the precise nature of the signalling
pathway(s) which couples inhibition by hypoxia of mitochondrial
oxidative phosphorylation to the activation of oxygen-sensing
cells, such as type I cells, and whether or not all oxygen-sensing
cells utilize a common signalling pathway. At the very least one
would expect an initial fall in ATP supply and associated ADP
accumulation that would be compensated for, in the immediate
term, by the adenylate kinase reaction, leading to consequent
increases in the AMP/ATP ratio [62,63]. When one considers this
and the fact that AMPK is intimately coupled to mitochondrial
metabolism via both increases in the AM(D)P/ATP ratio and
LKB1, the possibility that AMPK may contribute to hypoxia-
response coupling is immediately apparent. If this were the case,
then one would naturally expect any contribution of AMPK to
ventilatory control to be delivered at the level of the carotid
body type I cell and through the consequent inhibition of those
‘oxygen-sensing’ potassium channels known to underpin their
chemosensory response. Not least because thereafter the generally
held viewpoint is that carotid body afferent inputs to the brainstem
activate subordinate relays that modulate rCPG activities and thus
increase ventilation.

Our preliminary investigations into the role of the
LKB1/AMPK signalling pathway appeared entirely consistent
with this view, in that conditional deletion of LKB1 virtually
abolished the capacity for type I cell activation during hypoxia,
increases in afferent discharge and, like AMPK deletion,
attenuated the hypoxic ventilatory response [64,65]. Contrary
to these findings and against our expectations, however,
AMPK deletion failed to attenuate afferent discharge from
the carotid body, yet caused even greater attenuation of
the hypoxic ventilatory response [4] when compared with
LKB1 deletion (unpublished work). This runs counter to our
previous pharmacological studies, which suggested that 5-amino-

4-imidazolecarboxamide riboside (AICAR), an AMPK agonist
[66], activated carotid body type I cells and increased afferent
discharge [67], and that this action was inhibited by the AMPK
antagonist compound C. However, compound C is a very non-
selective kinase inhibitor, which in a screen of 70 protein
kinases was shown to inhibit at least ten other kinases more
potently than AMPK [68]. Moreover, off-target effects of other
pharmacological tools have also been identified, such as inhibition
by AICAR of adenosine transporters [69] (adenosine receptors
being key modulators of type I cell activity [70]) and/or AICAR-
mediated reductions in the adenylate pool and ATP [71,72].
One must therefore conclude that AMPK is not necessary for
type I cell activation by hypoxia. Consistent with this view, recent
studies on the actions of two different AMPK activators, AICAR
and A769662 [73], suggest that these agents neither precisely
mimic the effects of hypoxia on nor induce pronounced activation
of carotid body type I cells [74,75], and our own most recent
investigations now support this view (unpublished work).

Nevertheless it would appear that we have inadvertently
uncovered a split in the dependency on LKB1 and AMPK
respectively of carotid body activation during hypoxia on the
one hand and the hypoxic ventilatory response on the other.
The reasons for this remain to be resolved, but experimental
outcomes perhaps point to hierarchical control of the respiratory
network by LKB1, AMPK and one or more of the 12 AMPK-
related kinases [76]. Given that afferent discharge is, in great
part, triggered by exocytotic release of ATP from type I cells
[77], it is quite plausible that LKB1 may maintain, in an
AMPK-independent manner, the capacity for ATP synthesis
and/or exocytosis within type I cells, and thus afferent discharge
from the carotid body. This is entirely in keeping with the
fact that LKB1 may govern glucose homoeostasis [78,79] and
mitochondrial function [80,81] independently of AMPK, perhaps
via constitutive phosphorylation of an AMPK-related kinase
[76,82,83], given that LKB1 deletion has been shown to decrease
mitochondrial membrane potential and basal ATP levels in other
cell types [80,81,84]. It is therefore possible that any cell lacking
LKB1, such as carotid body type I cells, may be unable to
sustain appropriate cellular energy charge and activity due to
defective mitochondrial function, either at rest or during exposure
to metabolic stresses such as hypoxia.

So where does this leave us? Well one backward look takes
us to ATP, ADP and AMP levels and the inhibition during
hypoxia of type I cell K+ channels, which ultimately triggers
exocytosis [85–87]. The principal players in this respect are
the large conductance voltage- and Ca2 + -activated K+ current
(BKCa) [88,89] and the voltage-independent TASK-like leak
K+ current [90–92], although it should be noted that variations
in channel expression may confer identified species differences
[93,94] and contribute to changes of oxygen sensitivity during
postnatal maturation [95,96]. It is now clear that hypoxia (and
hypercapnia) principally acts to depolarize type I cells by
inhibiting TASK1/3 K+ channels [74], leading to Ca2 + entry
through voltage-gated Ca2 + channels, consequent exocytosis and
ATP release. Moreover, in the absence of a determining role for
AMPK [4,75], substantial evidence now supports the view that
TASK K+ channels directly monitor the adenylate pool [97],
and close when ATP levels fall consequent to the inhibition by
hypoxia of mitochondrial oxidative phosphorylation [60]. AMPK
does, however, phosphorylate and, like hypoxia, inhibit BKCa

channels of carotid body type I cells [22], the archetypal oxygen-
sensing potassium channel [85,89]. This action will clearly
have functional consequences with respect to transmitter release,
conceivably by modulating the transition to ‘bursting’ patterns of
action potential firing [98], but these remain to be resolved.
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In short, type I cell activation during hypoxia is probably
precipitated by changes in the adenylate pool and ATP [99], and
membrane depolarization due to subsequent inhibition of K+

currents carried by TASK1/3 heterodimers [91,100]. However,
the primacy of this view has recently been challenged by three
alternative hypotheses:

(1) It has been suggested that type I cell activation may be
triggered by increases in hydrogen sulfide production consequent
to a fall in carbon monoxide synthesis during hypoxia [101],
although the findings of others suggest that activation of carotid
body type I cells by exogenous hydrogen sulfide results from dir-
ect inhibition of mitochondrial oxidative phosphorylation [102].
The effects on type I cells of hydrogen sulfide may not, therefore,
be inconsistent with the conclusion drawn above. This perspective
has recently received support from single-cell transcriptome
analysis of mouse type I cells which identified few to no reads of
the enzymes responsible for generating either carbon monoxide
or hydrogen sulfide [55], respectively, haem oxygenase-2, or
cystathionine-γ -lyase and cystathionine-β-synthase.

(2) As mentioned previously, conditional deletion in tyrosine
hydroxylase-positive cells of Ndufs2, a mitochondrial complex
I gene which encodes a protein that participates in ubiquinone
binding, has also been shown to selectively block carotid body
activation during hypoxia (but not hypercapnia or hypoglycaemia)
and thus the hypoxic ventilatory response [61]. The authors
concluded that this probably results from loss, during hypoxia,
of the capacity for signalling via increased generation of
mitochondrial ROS. However this study did not address the impact
of Ndufs2 deletion on oxidative phosphorylation in type I cells,
the capacity for inhibition of type I cell mitochondrial oxidative
phosphorylation during hypoxia and consequent modulation of
TASK-like potassium currents by alterations in the adenylate
pool (see also [103]). Furthermore, and as discussed above,
NDUFA4L2 and COX4I2 are constitutively expressed by type I
cells and act to limit mitochondrial ROS production during
hypoxia [53,54]. That aside, it is important to note that conditional
deletion of Ndufs2 in catecholaminergic cells blocked the hypoxic
ventilatory response even though the capacity for both basal and
activated transmitter release was retained by type I cells (see
below for further discussion).

(3) Most recently a novel chemosensory signalling pathway
has been proposed to be a prerequisite for type I cell activation
during hypoxia, namely lactate-dependent activation of olfactory
receptor 78 (Olfr78) [104]. In this study global deletion of Olfr78
was found to block carotid body activation during hypoxia and
thus the hypoxic ventilatory response of mice. By virtue of a
requirement for lactate production and release consequently to
induction of anaerobic glycolysis, the proposed model for lactate-
dependent activation of Olfr78 during hypoxia is consistent
with the mitochondrial hypothesis, but is inconsistent with a
mechanism in which type I cell activation is determined by TASK
K+ channel inhibition through alterations in the adenylate pool
[74]. That is unless, of course, these two pathways converge.
Once again, however, it may be worthy of note that the hypoxic
ventilatory response was blocked by global Olfr78 deletion
despite the fact that basal afferent discharge from the carotid
body was retained (see below for further discussion).

Putting due scrutiny of the aforementioned signalling pathways
to one side, it is clear from our own findings that all pathways key
to carotid body type I cell activation during hypoxia must be, in
some way, dependent on the continued expression of LKB1, but
not AMPK, and a sufficiency of mitochondrial function and/or
ATP supply.

So how can it be that both LKB1 and AMPK deletion block
the hypoxic ventilatory response, when deletion of the latter
does not adversely affect carotid body activation during hypoxia
[4,29,64]? For such a proposal runs contrary to the generally
held view that increased afferent discharge from carotid body
to brainstem determines the ventilatory response to a fall in
arterial PO2 [34]. Well there is substantial evidence to support
an alternative yet inclusive perspective, namely that the hypoxic
ventilatory response is determined by the co-ordinated action
of the carotid body and a hypoxia-responsive circuit within the
brainstem. We will see that this must now be borne in mind
when drawing conclusions from all studies described above that
employed either global knockout strategies or conditional gene
deletion in catecholaminergic cells.

A DASH OF COPERNICUS – AMPK AND THE BRAIN-CENTRED
CHEMOSENSORY NETWORK

From here on in our aim is to be a little more provocative if not
heretical, at least in the eyes of some respiratory physiologists, by
giving emphasis to a matter that has long been quietly considered
by a minority of the field. In actual fact, our investigation is
merely the latest in a long line to have described experimental
observations that run counter to the standard model for the control
of ventilation by peripheral chemosensors, and the pre-eminence
of the carotid bodies in this respect.

Not surprisingly, in retrospect, the possibility that peripheral
chemosensors may not be the sole arbiters of the hypoxic
ventilatory response has been suggested by investigations on
the evolution of ventilatory control systems, most notably with
respect to the demonstration that oxygen-sensing occurs and
a component of the hypoxic ventilatory response arises at the
level of the caudal brainstem in amphibians, with both the
location and influence of the primary peripheral chemosensors
changing during the ascent from gill-breathing tadpole to lung-
assisted air-breathing adult [105,106]. In fact one could quite
reasonably argue that evolutionary pressures have periodically
led to the reconfiguration of peripheral chemoreceptor inputs
[106] about a common ancestral hypoxia-sensor within the caudal
brainstem, that underpins signal integration and thus acts as the
‘gatekeeper’ of respiratory adjustments during hypoxia. That
said, the possibility that neural networks within the brainstem
of mammals might respond to central hypoxia was first raised
over 35 years ago by the work of Dampney and Moon [107],
during their investigations on the central ischaemic vasomotor
response. Thereafter, during their investigations on Cushing’s
reflex [108], Sun and Reiss demonstrated that both cyanide and
hypoxia activated neurons within the rostral ventrolateral medulla
[109,110], mirroring Heymans and Bouckaert’s earlier work on
the carotid body. Moreover extensive evidence has been provided
in support of the view that increases in ventilation are initiated by
brainstem hypoxia in the presence of only basal normoxic afferent
input from the carotid bodies [111,112], and it has been suggested
that different aspects of the brainstem respiratory network may
exhibit different sensitivities to hypoxia [113].

To date, however, little emphasis has been placed on the role
of hypoxia-sensing at the brainstem, perhaps because the hypoxic
ventilatory response is so effectively abolished by resection of the
carotid sinus nerve in humans [114]. Yet extensive investigations
have demonstrated that following carotid body resection, hypoxia-
responsive catecholaminergic neurons of the caudal brainstem
may underpin partial recovery of the hypoxic ventilatory response
[115], at least in rodents, and it is recognized that loss of
these neurons underpins ventilatory dysfunctions associated with
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Rett syndrome, including hypoventilation and apnoea, which are
exacerbated during hypoxia [116].

Consistent with outcomes of the aforementioned studies, our
findings strongly suggest that AMPK governs the activation of
previously identified hypoxia-responsive nuclei within the caudal
brainstem [110,117], and thus supports the delivery of increased
respiratory drive during hypoxia that is required to protect against
hypoventilation and apnoea. The most convincing evidence of
this was provided by examination of brainstem function in AMPK
knockout mice by functional magnetic resonance imaging (fMRI),
which identified reduced activation during hypoxia of discrete
dorsal and ventral nuclei of the caudal brainstem, despite the
fact that carotid body afferent discharge was retained [4]. This
was corroborated by analysis of immediate early gene (c-fos)
expression.

The caudal location relative to Bregma of the dorsal active
region is consistent with areas of the nucleus tractus solitarius
(NTS) that are activated by hypoxia and which represent the
primary site of receipt of carotid body afferent input [35,117,118].
Here AMPK deletion selectively attenuated c-fos expression
during hypoxia by mixed subpopulations of C2 neurons and A2
neurons (SubP; SolM) within the medial subnucleus proximal
to the midline and the area postrema (AP) [4], which have been
previously shown to be activated during hypoxia [38]. A2 neurons
of the AP/NTS provide afferent input to and determine, together
with the carotid body, activation by hypoxia of A1/C1 neurons
within the ventrolateral medulla [38,119], the position of which
[119] aligns well with the ventral active region identified by
fMRI analysis [4]; by contrast projections of the NTS mostly
avoid key components of the rCPGS [119], namely the Bötzinger
and pre-Bötzinger complexes [120]. Analysis of c-fos expression
at the level of the ventrolateral medulla suggested that AMPK
deletion selectively reduced the activation of A1 neurons during
hypoxia, although it should be noted that there is significant
overlap between the most caudal C1 and the most rostral A1
neurons [121]. Our findings therefore suggest that the hypoxic
ventilatory response, including that provided by afferent inputs
from peripheral chemosensors, is attenuated by loss of AMPK
function at the level of the caudal brainstem, within a neuronal
circuit spanning the C2/A2 neurons of the NTS and A1 neurons of
the ventrolateral medulla. This is consistent with optogenetic and
pharmacological interventions at the level of the NTS [117,122],
and the proposal that NTS neurons lie on the sensory side
of the central respiratory network [123,124]. We cannot rule
out the possibility that suppression of the hypoxic ventilatory
response in AMPK knockouts may be allied to exacerbation of
the Cushing reflex [35,108]. However, this reflex is only elicited
under anaesthesia and by ischaemic hypoxia (∼1% O2), and
is maintained or enhanced by hypercapnia [35,108,125]. By
contrast, hypoxic ventilatory depression was evident in conscious
AMPK knockouts during mild and severe hypoxia, as were deficits
in brainstem activity, and was reversed rather than exacerbated by
hypercapnia.

Surprisingly, we observed pronounced right–left asymmetry
of brainstem activation during hypoxia, which may provide for
specialization sufficient to prevent delays in respiratory responses
to hypoxic stress by limiting conflicting outputs from each
side of the brain [126], as has been proposed previously with
respect to cognitive performance [127]. Further investigation
will be required to determine how right–left asymmetry may
be orchestrated by the complex interplay of neurotransmitters
deployed during hypoxia and the role of AMPK in such processes
of selection. In this respect it is notable that C2 and A2 neurons
are both catecholaminergic and glutamatergic [123,128], and that
6–10% of tyrosine hydroxylase-positive C2, A2 and A1 neurons

also express neuronal nitric oxide synthase, which supports the
hypoxic ventilatory response by synthesizing NO [129] and/or
S-nitrosothiols [130], and in a manner that may be facilitated by
AMPK [131].

It could be argued that AMPK deletion in catecholaminergic
cells simply leads to the failure of central integration and
transduction of peripheral chemoafferent input and consequent
failure of the hypoxic ventilatory response, due to the inability of
affected neurons to maintain appropriate levels of activity when
exposed to metabolic stress [132]. However, following AMPK
deletion, carotid body afferent discharge remained exquisitely
sensitive to a fall in PO2 and ventilatory responses to hypercapnia
remained unaffected even during severe (8 %) hypoxia, which
clearly demonstrates that AMPK deletion does not compromise
the capacity during hypoxia for activation of chemosensory
catecholaminergic neurons, exocytosis nor effective delivery of
increased respiratory drive. This is consistent with the observation
that neuronal integrity during hypoxia may be preserved, in part,
by AMPK-independent mechanisms [133] that maintain ATP
supply by accelerating glycolysis and in a manner supported by
mobilization of astrocyte glycogen stores [134]. If one accepts
this position, then AMPK must aid the modulation by hypoxia of
discrete nuclei within the caudal brainstem that deliver increased
drive to breathe via neural networks that modulate the rCPGs [36],
and which may also co-ordinate functional hyperaemia [135].

THE CASE FOR SIGNAL INTEGRATION AT AN OXYGEN-SENSING
NUCLEUS WITHIN THE BRAINSTEM

The phrase ‘to say more would be pure speculation’ is often
uttered and rightly so, at least when interpreting experimental
outcomes. In the present context, however, we are happy to invite
ridicule and scorn for the sake of greater debate and experimental
inquisition, and to achieve this goal we bring to centre stage the
possibility that a cluster of hypoxia-responsive neurons proximal
to the NTS form a nucleus that acts as the ‘gatekeeper’ of the
hypoxic ventilatory response.

If this nucleus does indeed exist, then why has it not been
located by the extensive efforts of so many specialists in the field?
Perhaps we are dealing with an interdependent circuit mechanism,
with multiple points of signal integration? When it comes down
to hand waving, either a single node or multi-nodal system of
signal integration appears plausible, i.e. there may be no discrete
nucleus to find. In this context and in light of all things above, we
need now consider why:

(1) The degree of block by AMPK deletion of the hypoxic
ventilatory response is increased in a manner directly related to
the severity of hypoxia [4].

(2) The hypoxic ventilatory response can be triggered by
central nervous system hypoxia alone, providing there is
continued receipt of basal (normoxic) afferent input from the
carotid bodies [136].

(3) The hypoxic ventilatory response may be blocked by
interference at any point within this circuit, e.g. carotid body
resection [114] or AMPK deletion [4].

We propose (Figure 4) that LKB1/AMPK signalling pathways
support coincidence detection and thus signal integration at either
a single node or multiple nodes within and thus activation of a
hypoxia-responsive circuit that encompasses, at the very least,
C2/A2 neurons within the NTS and ventrolateral A1 neurons,
due to the capacity for AMPK activation by increases in the
AM(D)P/ATP ratio and LKB1 [3] that may be determined by
‘local hypoxic stress’ (decreased ATP supply) and in a manner
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Figure 4 Schematic description of the new hypothesis on the integration by AMPK of local and applied metabolic stresses

(A) Minimal model describes a single node for integration of local and applied metabolic stress by AMPK. (B) Extended model describes the possibility that there is capacity for signal integration, of
local and applied metabolic stress, at multiple nodes within the hypoxia-responsive respiratory network. Adenosine (Aden).

that is coupled to ‘applied metabolic stress’ (increased ATP usage)
delivered via afferent inputs from peripheral chemoreceptors to
the NTS, and, in turn, to ventrolateral A1 neurons and perhaps
also to downstream aspects of the cardiorespiratory network.
Afferent input and brainstem hypoxia could thereby determine,
each in part, the set-point about which AMPK and thus the
brainstem respiratory network are activated during hypoxia.
Thereafter AMPK-dependent modulation of cellular metabolism
[3], ion channels and thus neuronal firing frequency [21], and/or
transmitter release [130,131] may facilitate efferent output and
thereby deliver increased drive to breathe, in a manner that may
be attenuated or augmented by appropriate regulation of AMPK
expression.

In essence then, our proposal is that the LKB1/AMPK
signalling pathway monitors changes in adenylate charge centrally
as an index of local hypoxic stress and integrates with this
applied metabolic stresses delivered by afferent chemosensory
inputs, which are in turn providing an index of peripheral hypoxic
(metabolic) status. If so, then perhaps we can garner more from
our considerations on the regulation of afferent output from the
peripheral chemoreceptors, namely the carotid and aortic bodies,
in terms of their role in monitoring changes in adenylate charge
and thus in the provision of an index of peripheral hypoxic stress.

As discussed in detail previously, hypoxia depolarizes type I
cells through inhibition of TASK1/3 K+ channels, leading to
voltage-gated Ca2 + entry, exocytosis and ultimately ATP release.
Subsequently ATP stimulates postsynaptic P2X2/3 receptors on
afferent (petrosal) nerve terminals causing excitation, but at the
same time activates P2Y2 receptors on adjacent glial-like type II
cells [77,137]. P2Y2 receptor activation then triggers further ATP
release from type II cells into the synaptic cleft, where ATP (from
both type II and type I cells) is broken down by extracellular
5′-ectonucleotidase into adenosine, which primarily activates
adenosine A2A receptors on type I cells [77]. Activation of A2A

receptors leads to further inhibition of TASK1/3 channels and
enhanced type I cell depolarization [138], and further augments
ATP release during hypoxia [77]; a similar system probably
operates at the aortic bodies (C. Nurse, personal communication).
It seems quite possible, therefore, that LKB1 may govern a set-

point for metabolic homoeostasis about which both carotid and
aortic bodies monitor adenylate charge as an index of hypoxic
stress, by integrative inhibition of TASK1/3 channels consequent
to deficits in mitochondrial ATP production that are allied to
purinergic cross-talk between type I and type II cells. Via their
tripartite synapse with afferent petrosal neurons [77], type I and
type II cells may therefore act in concert to relay information on
changes in the ‘peripheral adenylate pool’ (ATP, ADP, AMP and
adenosine) to the brainstem. During the transit of re-oxygenated
blood from the heart to the brainstem, the NTS may thereby co-
ordinate the integration of information on adenylate charge, as
an index of arterial oxygen saturation, via at least four separate
and highly vascularized nodes, namely the aortic and carotid
bodies, the AP/NTS and the ventrolateral medulla, in order to
appropriately co-ordinate cardiorespiratory function (Figure 4).

IN ELLIPTICAL ORBIT – AMPK AND THE REGULATION OF BLOOD
FLOW AND GASEOUS EXCHANGE

Hypoxia without hypercapnia induces pulmonary vasoconstric-
tion, and thus assists ventilation–perfusion matching by diverting
blood from oxygen-deprived to oxygen-rich areas of the lung
[139,140]. By contrast, systemic arteries dilate in response to
tissue hypoxemia, in order to match local perfusion to local
metabolism [141]. Whichever we consider, it is now evident
that AMPK may be key to the regulation of vascular reactivity
during metabolic stress [23,142] and may thus facilitate gaseous
exchange across the body.

AMPK and ventilation–perfusion matching at the lung

Quite unlike the hypoxic ventilatory response, hypoxic pulmonary
vasoconstriction is governed locally and is mediated by
mechanisms intrinsic to pulmonary arterial smooth muscles and
endothelial cells. This is evident from the fact that neither central
nor local regulation of the autonomic nervous system contributes
to hypoxic pulmonary vasoconstriction [143–145], which remains
unaffected following denervation in humans [146]. However, here
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too the nature of the principal signalling pathway(s) involved
remains open to debate [103], although it is clear that this response
relies on the modulation by hypoxia of mitochondrial metabolism
[48]; pulmonary arterial smooth muscle cells depleted, by
ethidium bromide, of mitochondrial DNA and thus of functional
mitochondria do not respond to hypoxia [147], although inhibitors
of mitochondrial oxidative phosphorylation either mimic or
occlude hypoxic pulmonary vasoconstriction [148,149]. As
mentioned previously and consistent with findings on carotid
body type I cells [55], COX4I2 is constitutively expressed by
pulmonary arterial myocytes [59] and may also act here to limit
mitochondrial oxygen consumption and ROS production during
hypoxia and confer, in part, the capacity of these cells to monitor
oxygen supply [55].

In the light of the evidence in support of a role for
mitochondria in hypoxia-response coupling, it was therefore
proposed that the LKB1/AMPK signalling pathway might
couple inhibition by hypoxia of mitochondrial metabolism to
hypoxic pulmonary vasoconstriction [1,23,150]. Consistent with
this view, AMPK-α1 activity was found to be greater in
pulmonary than systemic (mesenteric) arterial smooth muscles
[23] and this may in its own right afford a degree of
pulmonary selectivity in terms of the capacity and nature
of the response to physiological levels of hypoxia, over and
above that which might be conferred by COX4I2 expression.
Indeed exposure of pulmonary arterial smooth muscle to hypoxia
(15–20 mmHg oxygen) precipitated increases in the AMP/ATP
ratio, marked activation of AMPK and phosphorylation of
acetyl-CoA carboxylase [23]; which may go some way to
explain why cellular ATP levels remain remarkably stable in
the presence of hypoxia [148]. Inhibition of mitochondrial
oxidative phosphorylation by phenformin [151] and AICAR
[66] precipitated AMPK activation and acetyl-CoA carboxylase
phosphorylation within pulmonary arterial myocytes [23].
Regardless of their respective mechanism of action, hypoxia,
phenformin and AICAR also induced an increase in the
intracellular calcium concentration in and contraction of
acutely isolated pulmonary arterial myocytes, and did so
by mobilizing sarcoplasmic reticulum stores via ryanodine
receptors. Most significantly AICAR evoked a sustained
and reversible constriction of pulmonary artery rings, which
exhibited characteristics strikingly similar to hypoxic pulmonary
vasoconstriction; not least clearly defined contributions from
both smooth muscles and the endothelium. Furthermore, hypoxic
pulmonary vasoconstriction was inhibited by compound C [152].

In this instance it would appear that the pharmacology
held true, for our most recent studies on knockout mice
suggest that LKB1 and AMPK, but not CaMKK-β, are indeed
required for hypoxic pulmonary vasoconstriction [153] and
that dysfunction within the AMPK signalling pathway may
precipitate pulmonary hypertension. Further support for this view
has recently been provided by our demonstration that upon
inhibition of mitochondrial oxidative phosphorylation, AMPK
directly phosphorylates Kv1.5 channels, and inhibits K+ currents
carried by Kv1.5 in pulmonary arterial myocytes [24]. This is
evident from the fact that down-regulation of Kv1.5 expression
and activity is a hallmark not only of hypoxic pulmonary
vasoconstriction but also of pulmonary hypertension [154–162],
and may contribute to increased survival of smooth muscle cells
due to attenuation of K+ channel-dependent apoptosis [163–165]
and also facilitate the phenotypic switch from a contractile to a
proliferative state [166,167].

Consistent with the above, Zhou and co-workers have suggested
that AMPK activation promotes survival of pulmonary arterial
myocytes during hypoxia and thus cell proliferation by a dual

mechanism, incorporating activation of autophagy by AMPK-α1
and reductions in cell death conferred by AMPK-α2 acting to
reduce apoptosis via different pathways [168]. Contrary to this
latter proposal, however, up-regulation of mTORC2 signalling
has been proposed to underpin smooth muscle proliferation and
the progression of both idiopathic and hypoxic pulmonary arterial
hypertension [169], by promoting smooth muscle cell survival
in a manner, at least in part, dependent on down-regulation
of AMPK and consequent activation of mammalian target of
rapamycin complex 1 (mTORC1). One possible explanation for
these contrary prepositions could be that AMPK action is context-
dependent and/or that the progression of pulmonary hypertension
at different stages is governed by temporal fluctuations in AMPK
activity.

Regulation of utero-placental blood flow during hypoxia

AMPK has most recently been implicated in the regulation
of uterine artery reactivity during hypoxia [170]. AMPK may,
therefore, link maternal metabolic and cardiovascular responses
during pregnancy and govern oxygen and nutrient supply to
the foetus, thus determining foetal growth. Consistent with this
view, PRKAA1 variants most common to Andeans are positively
associated with birth weight, uterine artery diameter and to
alterations in the expression of genes in the mammalian target of
rapamycin (mTOR) pathway that have been previously implicated
in altitude-associated foetal growth restriction [2].

CONCLUSION

In summary a growing body of evidence now supports the
proposal that AMPK is key to oxygen and thus energy (ATP)
supply to the body as a whole, through its contribution to the
governance of the hypoxic ventilatory response, ventilation–
perfusion matching at the lung and local regulation of blood
and thus oxygen supply to the body systems. Aberrant
AMPK expression or activity may therefore compromise system
responses to hypoxia or other metabolic stressors and precipitate,
for example, pulmonary hypertension [171], sleep-disordered
breathing [172], hypertension [173] or foetal growth restriction
[170], which are associated with either ascent to altitude [2,30]
and/or metabolic syndrome-related disorders [172,174,175].
Therefore, further investigations on the role of AMPK in the
regulation of ventilatory and vascular function in health and
disease are warranted, in order that we may identify new
therapeutic strategies allied to our growing understanding of the
potential for development of subunit-selective small-molecule
regulators of AMPK [73,176–178].
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