18 research outputs found

    The evolution of olfactory gene families in Drosophila and the genomic basis of chemical-ecological adaptation in Drosophila suzukii

    Get PDF
    How the evolution of olfactory genes correlates with adaption to new ecological niches is still a debated topic. We explored this issue in Drosophila suzukii, an emergin gmodel that reproduces on fresh fruit rather than in fermenting substrates likemost other Drosophila. We first annotated the repertoire of odorant receptors (ORs), odorant binding proteins (OBPs), and antennal ionotropic receptors (aIRs) in the genomes of two strains of D. suzukii and of its close relative Drosophila biarmipes. We then analyzed these genes on the phylogeny of 14 Drosophila species: whereas ORs and OBPs are characterized by higher turnover rates in some lineages including D. suzukii, aIRs are conserved throughout the genus. Drosophila suzukii is further characterized by a non-random distribution of OR turnover on the gene phylogeny, consistent with a change in selective pressures. In D. suzukii, we found duplications and signs of positive selection in ORs with affinity for short-chain esters, and loss of function of ORs with affinity for volatiles produced during fermentation. These receptors-Or85a and Or22a-are characterized by divergent alleles in the European and American genomes, and we hypothesize that they may have been replaced by some of the duplicated ORs in corresponding neurons, a hypothesis reciprocally confirmed by electrophysiological recordings. Our study quantifies the evolution of olfactory genes in Drosophila and reveals an array of genomic events that can be associated with the ecological adaptations of D. suzukii

    Linking genomics and ecology to investigate the complex evolution of an invasive Drosophila pest

    Get PDF
    Drosophilid fruit flies have provided science with striking cases of behavioural adaptation and genetic innovation. A recent example is the invasive pest Drosophila suzukii, which, unlike most other Drosophila, lays eggs and feeds on undamaged, ripening fruits. This poses a serious threat for fruit cultivation, but also offers an interesting model to study evolution of behavioural innovation. We developed genome and transcriptome resources for D. suzukii. Coupling analyses of these data with field observations, we propose a hypothesis of the origin of its peculiar ecology. Using nuclear and mitochondrial phylogenetic analyses, we confirm its Asian origin, and reveal a surprising sister relationship between the eugracilis and the melanogaster subgroups. While the D. suzukii genome is comparable in size and repeat content to other Drosophila species, it has the lowest nucleotide substitution rate among the species analysed in this study. This finding is compatible with the overwintering diapause of D. suzukii, which results in a reduced number of generations per year compared to its sister species. Genome-scale relaxed clock analyses support a late Miocene origin of D. suzukii, concomitant with paleogeological and climatic conditions that suggest an adaptation to temperate montane forests, a hypothesis confirmed by field trapping. We propose a causal link between the ecological adaptations of D. suzukii in its native habitat and its invasive success in Europe and North America

    Sexual Behavior of Drosophila suzukii

    Get PDF
    A high reproductive potential is one reason for the rapid spread of Drosophila suzukii in Europe and in the United States. In order to identify mechanisms that mediate mating and reproduction in D. suzukii we studied the fly’s reproductive behavior, diurnal mating activity and sexual maturation. Furthermore, we studied the change of female cuticular hydrocarbons (CHCs) with age and conducted a preliminary investigation on the role of female-derived chemical signals in male mating behavior. Sexual behavior in D. suzukii is characterized by distinct elements of male courtship leading to female acceptance for mating. Time of day and age modulate D. suzukii mating activity. As with other drosophilids, female sexual maturity is paralleled by a quantitative increase in CHCs. Neither female CHCs nor other olfactory signals were required to induce male courtship, however, presence of those signals significantly increased male sexual behavior. With this pilot study we hope to stimulate research on the reproductive biology of D. suzukii, which is relevant for the development of pest management tools

    Plant reproductive traits mediate tritrophic feedback effects within an obligate brood-site pollination mutualism

    No full text
    Plants, herbivores and parasitoids affect each other directly and indirectly; however, feedback effects mediated by host plant traits have rarely been demonstrated in these tritrophic interactions. Brood-site pollination mutualisms (e.g. those involving figs and fig wasps) represent specialised tritrophic communities where the progeny of mutualistic pollinators and of non-mutualistic gallers (both herbivores) together with that of their parasitoids develop within enclosed inflorescences called syconia (hence termed brood-sites or microcosms). Plant reproductive phenology (which affects temporal brood-site availability) and inflorescence size (representing brood-site size) are plant traits that could affect reproductive resources, and hence relationships between trees, pollinators and non-pollinating wasps. Analysing wasp and seed contents of syconia, we examined direct, indirect, trophic and non-trophic relationships within the interaction web of the fig-fig wasp community of Ficus racemosa in the context of brood site size and availability. We demonstrate that in addition to direct resource competition and predator-prey (host-parasitoid) interactions, these communities display exploitative or apparent competition and trait-mediated indirect interactions. Inflorescence size and plant reproductive phenology impacted plant-herbivore and plant-parasitoid associations. These plant traits also influenced herbivore-herbivore and herbivore-parasitoid relationships via indirect effects. Most importantly, we found a reciprocal effect between within-tree reproductive asynchrony and fig wasp progeny abundances per syconium that drives a positive feedback cycle within the system. The impact of a multitrophic feedback cycle within a community built around a mutualistic core highlights the need for a holistic view of plant-herbivore-parasitoid interactions in the community ecology of mutualisms

    Path diagrams representative of the best-fit models for each season.

    No full text
    <p>These path models describe the relationships between various factors for: (a) Season 1 (winter), (b) Season 2 (hot days and cold nights), (c) Season 3 (summer) and (d) Season 4 (wet). Measures of syconium volume, number of pollinators, parasites and seeds per syconium for the path analyses were obtained from 237 syconia in season 1, 340 in season 2, 427 in season 3 and 405 in season 4. The intra-crop variations in syconium inhabitants and syconium volume were described using the standard deviation (SD) in numbers of that inhabitant and syconium volumes amongst syconia within a tree during a particular reproductive episode. All arrows indicate direct relationships between factors. Solid arrows indicate positive relationships and dotted arrows indicate negative relationships. Numbers next to these arrows indicate standardised path coefficients for direct effects. *** p<0.001, ** p<0.01 and >0.001, *p<0.05 and >0.01, n.s.</p

    High Temperatures Result in Smaller Nurseries which Lower Reproduction of Pollinators and Parasites in a Brood Site Pollination Mutualism

    No full text
    <div><p>In a nursery pollination mutualism, we asked whether environmental factors affected reproduction of mutualistic pollinators, non-mutualistic parasites and seed production via seasonal changes in plant traits such as inflorescence size and within-tree reproductive phenology. We examined seasonal variation in reproduction in <i>Ficus racemosa</i> community members that utilise enclosed inflorescences called syconia as nurseries. Temperature, relative humidity and rainfall defined four seasons: winter; hot days, cold nights; summer and wet seasons. Syconium volumes were highest in winter and lowest in summer, and affected syconium contents positively across all seasons. Greater transpiration from the nurseries was possibly responsible for smaller syconia in summer. The 3–5°C increase in mean temperatures between the cooler seasons and summer reduced fig wasp reproduction and increased seed production nearly two-fold. Yet, seed and pollinator progeny production were never negatively related in any season confirming the mutualistic fig–pollinator association across seasons. Non-pollinator parasites affected seed production negatively in some seasons, but had a surprisingly positive relationship with pollinators in most seasons. While within-tree reproductive phenology did not vary across seasons, its effect on syconium inhabitants varied with season. In all seasons, within-tree reproductive asynchrony affected parasite reproduction negatively, whereas it had a positive effect on pollinator reproduction in winter and a negative effect in summer. Seasonally variable syconium volumes probably caused the differential effect of within-tree reproductive phenology on pollinator reproduction. Within-tree reproductive asynchrony itself was positively affected by intra-tree variation in syconium contents and volume, creating a unique feedback loop which varied across seasons. Therefore, nursery size affected fig wasp reproduction, seed production and within-tree reproductive phenology via the feedback cycle in this system. Climatic factors affecting plant reproductive traits cause biotic relationships between plants, mutualists and parasites to vary seasonally and must be accorded greater attention, especially in the context of climate change.</p></div

    Average daily maximum and minimum values of: (a) Temperature; (b) Relative humidity for each month.

    No full text
    <p>Based on these values, months were grouped into 4 seasons, with 1 denoting the cold season, 2 denoting the season with hot days and cold nights, 3 denoting the hot season and 4 denoting the wet season.</p

    Box-plots indicating seasonal variations in plant traits, fig wasp reproduction and seed production.

    No full text
    <p>These are: (a) syconium volumes, (b) within-tree asynchrony values (n = 16 reproductive episodes or crops in season 1, 22 in season 2, 26 in season 3 and 30 in season 4), (c) number of pollinators per syconium, (d) number of parasites per syconium and (d) number of seeds per syconium. For measures of syconium volume, number of pollinators, parasites and seeds per syconium, n = 237 syconia in season 1, 340 in season 2, 427 in season 3 and 405 in season 4. Different letters above boxes represent significant differences at the p<0.05 level (values with the same letters were not significantly different) as according to LMM analyses using log transformed values of the first three variables and square root transformed values of the last two variables.</p

    Stage-specific expression of an odorant receptor underlies olfactory behavioral plasticity in Spodoptera littoralis larvae

    Get PDF
    Background: The detection of environmental cues and signals via the sensory system directs behavioral choices in diverse organisms. Insect larvae rely on input from the chemosensory system, mainly olfaction, for locating food sources. In several lepidopteran species, foraging behavior and food preferences change across larval instars; however, the molecular mechanisms underlying such behavioral plasticity during larval development are not fully understood. Here, we hypothesize that expression patterns of odorant receptors (ORs) change during development, as a possible mechanism influencing instar-specific olfactory-guided behavior and food preferences.Results: We investigated the expression patterns of ORs in larvae of the cotton leafworm Spodoptera littoralis between the first and fourth instar and revealed that some of the ORs show instar-specific expression. We functionally characterized one OR expressed in the first instar, SlitOR40, as responding to the plant volatile, beta-caryophyllene and its isomer alpha-humulene. In agreement with the proposed hypothesis, we showed that first but not fourth instar larvae responded behaviorally to beta-caryophyllene and alpha-humulene. Moreover, knocking out this odorant receptor via CRISPR-Cas9, we confirmed that instar-specific responses towards its cognate ligands rely on the expression of SlitOR40.Conclusion: Our results provide evidence that larvae of S. littoralis change their peripheral olfactory system during development. Furthermore, our data demonstrate an unprecedented instar-specific behavioral plasticity mediated by an OR, and knocking out this OR disrupts larval behavioral plasticity. The ecological relevance of such behavioral plasticity for S. littoralis remains to be elucidated, but our results demonstrate an olfactory mechanism underlying this plasticity in foraging behavior during larval development
    corecore