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Abstract

Howtheevolutionofolfactorygenescorrelateswithadaptiontonewecologicalniches is still adebatedtopic.Weexploredthis issue in

Drosophila suzukii, an emerging model that reproduces on fresh fruit rather than in fermenting substrates like most otherDrosophila.

We first annotated the repertoire of odorant receptors (ORs), odorant binding proteins (OBPs), and antennal ionotropic receptors

(aIRs) in the genomes of two strains of D. suzukii and of its close relative Drosophila biarmipes. We then analyzed these genes on the

phylogeny of 14 Drosophila species: whereas ORs and OBPs are characterized by higher turnover rates in some lineages including

D. suzukii, aIRs are conserved throughout the genus. Drosophila suzukii is further characterized by a non-random distribution of OR

turnover on the gene phylogeny, consistent with a change in selective pressures. In D. suzukii, we found duplications and signs of

positive selection in ORs with affinity for short-chain esters, and loss of function of ORs with affinity for volatiles produced during

fermentation. These receptors—Or85a and Or22a—are characterized by divergent alleles in the European and American genomes,

and we hypothesize that they may have been replaced by some of the duplicated ORs in corresponding neurons, a hypothesis

reciprocally confirmed by electrophysiological recordings. Our study quantifies the evolution of olfactory genes in Drosophila and

reveals an array of genomic events that can be associated with the ecological adaptations of D. suzukii.

Key words: odorant receptors, adaptation, Drosophila suzukii, comparative genomics.

Introduction

The Importance of the Olfactory System in Insect
Evolution and Pest Management

Olfaction has a fundamental role in animal behavior and is one

of the key players in niche specialization (Sanchez-Gracia et al.

2009). For this reason, targeting chemosensation, for exam-

ple, by means of repellents or attractants, is important for

understanding and controlling insect populations (Heuskin

et al. 2011). Insect olfaction is mediated at the periphery

level by an array of olfactory proteins, including odorant re-

ceptors (ORs), a sub-family of antennal expressed ionotropic

receptors (aIRs), and their associated odorant binding proteins

(OBPs) (Benton et al. 2009; Sanchez-Gracia et al. 2009). Insect

ORs, which are not homologs to vertebrate ones, are ex-

pressed in specialized neurons that extend into sensilla on

the antennae and on the maxillary palp; air-borne volatiles

enter through pores present in the sensilla (Steinbrecht

1997) and most likely bind a specific OBP in the extra-cellular

aqueous lumen. Then volatiles enter in contact with the sur-

face of dendrites (Vogt and Riddiford 1981), where they bind

to an OR (or aIR), resulting in a conformational change in the

OR-coreceptor (ORCO) heterodimer, and cause opening of its

ion channels, membrane depolarization, and a neuronal re-

sponse (Sato et al. 2008; Wicher et al. 2008).

The genomic basis of olfaction has been widely studied in

insects, particularly in the 12 annotated Drosophila genomes

(Robertson et al. 2003; Vieira et al. 2007; Gardiner et al. 2008;

GBE
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Sanchez-Gracia et al. 2009; Robertson 2009). Previous stud-

ies, mostly quantitative, indicated that OR and OBP gene fam-

ilies evolve according to a typical birth-and-death process with

random lineage-specific duplications and losses, whose fate

will be determined by genetic drift and selection (Guo and Kim

2007; McBride and Arguello 2007; Vieira and Rozas 2011).

However, how the evolution of these genes correlates with

actual adaption to new ecological niches is a mostly unex-

plored topic. Current examples of the role of ORs in the ad-

aptation of Drosophilids include Drosophila sechellia, which

oviposits only on morinda fruits (Morinda citrifolia L.), and

Scaptomyza flava, which has leaf-miner larvae: in both spe-

cies, the ecological switch has been correlated to shifts in the

role of Or22a (Dekker et al. 2006; Goldman-Huertas et al.

2015).

Drosophila suzukii, an Emerging Evolutionary Model and
Pest

Drosophila suzukii Matsumura (Diptera: Drosophilidae) is a

fruit fly native to Southeast Asia that has recently invaded

America and Europe (Rota-Stabelli et al. 2013; Asplen et al.

2015). Whereas most Drosophila species are attracted to, and

oviposit in, fermenting fruits, D. suzukii uses a typical serrated

ovipositor to pierce the skin of ripening soft fruits and oviposit

in them. Larvae feed on fruit pulp, promoting yeast/bacterial

secondary infections and causing serious economic losses to

the American and European soft-fruit production (Goodhue

et al. 2011; Walsh et al. 2011; Calabria et al. 2012; Cini et al.

2012). To limit such damage, D. suzukii populations are mainly

suppressed using pesticides; this causes environmental and

health concerns because treatments are performed close to

harvest, with a consequently high risk of chemical residual on

fruits. Therefore, the current research management agenda

(Asplen et al. 2015) includes scrutinizing the neurophysiology,

genetics, genomics, metagenomics, and behavior of D. suzukii

in search of potential targets for use in integrated pest man-

agement strategies.

The shift in preference for ripe fruits in D. suzukii also offers

a unique possibility for comparative evolutionary studies on

the adaptive origin of new ecological and behavioral traits.

Throughout the past decades, Drosophila proved to be an

excellent model organism for olfactory studies (Dekker et al.

2006; Ibba et al. 2010; McBride 2007). Although it is un-

known whether ancestral Drosophila species had a preference

for fermenting and rotting resources (Begon 1982), today

such a preference predominates in the Sophophora subgenus,

to which D. suzukii belongs. The group includes several spe-

cies (fig 1) for which a wealth of genetic, genomic, neurobi-

ological, and physiological resources are available, facilitating

comparative genomic studies and the interpretation of evolu-

tionary analyses (Ometto et al. 2013; Dekker et al. 2015;

Rossi-Stacconi et al. 2016). Work is ongoing to understand

how D. suzukii is attracted (Landolt et al. 2012; Keesey et al.

2015; Revadi et al. 2015; Scheidler et al. 2015) or repelled

(Krause Pham and Ray 2015) by specific odors compared with

its sister species: the genetic basis of these (and likely other still

undetected) chemo-ecological differences are however

almost totally unexplored and only a handful of ORs have

been functionally annotated (Revadi et al. 2015).

Aim of the Study

The aim of our study is to identify key chemosensory genes

that accompanied the move of D. suzukii into a new ecolog-

ical niche. We mined the genome and annotated the entire

olfactory repertoire (ORs, aIRs, and OBPs) of two D. suzukii

strains (Italian and American) and of the closely related spe-

cies, Drosophila biarmipes. We studied these genes within a

phylogenetic framework of 14 Drosophila, discriminating and

characterizing the genomic events, the genetic changes, and

the selective forces that occurred during the evolutionary his-

tory of the genus, particularly D. suzukii. In addition, we cou-

pled these results with ad hoc physiological experiments to

confirm the functional and likely adaptive role of some of

the genomic events. Our results not only cast new light on

the molecular basis of adaptation in D. suzukii, but also pro-

vide an updated look at the evolution of odorant genes in

Drosophila.

Materials and Methods

Identification, Annotation, and Nomenclature of
Chemosensory Repertoire in D. suzukii and D. biarmipes

We extracted the complete set of OR, OBP, and aIR protein

sequences using two different strategies. In a first approach,

we used an automatic de novo gene prediction in the

D. suzukii and D. biarmipes genomes (accession

number CAKG00000000.1 (Ometto et al. 2013) and

AFFD00000000.2, respectively) using AUGUSTUS (Stanke

and Waack 2003). We then queried the predicted proteomes

using orthologs of the three gene families from all 12

Drosophila genomes from FlyBase (Drysdale et al. 2005)

using iterated PSI-BLAST (Altschul et al. 1997) searches with

an e-value cut-off of 10� 5 for homology assignment. The first

hit was labeled as the putative ortholog, whereas other hits,

when present, were labeled as putative paralogs. In a second,

more manual-based, approach, we directly searched the com-

plete set of D. melanogaster OR, OBP, and aIR protein se-

quences against D. suzukii and D. biarmipes genomes, using

TBLASTN (Altschul et al. 1997) with an e-value cut-off of

10� 5. Scaffolds that passed this threshold were extracted

and exons were mapped onto the protein query to manually

reconstruct the orthologous coding sequence (CDS). As in the

first approach, the first hit was labeled as the putative

ortholog, whereas other possible hits were considered puta-

tive paralogs. To assess orthology, we studied the distribution

of genes on a six-species gene phylogeny (described in the
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Gene trees section, see below): using a threshold rule of boot-

strap> 70, we could assess the orthology of genes previously

labeled as paralogs, and define lineage-specific duplications.

We performed an exhaustive search by using a recursive

approach that required various rounds of BLAST searches, an-

notation, alignment, and gene-trees inspection. To further

verify whether missing hits in either D. suzukii or D. biarmipes

genomes were false-negatives, we further used the HMMER

package (Mistry et al. 2013) (v3.1b1; threshold of 10� 5) to

perform an exhaustive search against the PFAM protein librar-

ies (Punta et al. 2012) of chemosensory receptor (7TM_7)

family (PF02949) for ORs, and of PBP/GOBP family

(PF01395) for OBPs. A further validation of putative missing/

incomplete genes was performed by searching the chemosen-

sory proteins against the trace archives of the raw

unassembled D. biarmipes and D. suzukii NGS data using

MegaBlast (with an e-value cut-off of 10� 10). We also

checked for possible false-positives in D. suzukii as a conse-

quence of intraspecific allelic variations by doing re-blast and

cross-checking the results against the D. suzukii American

genome (Accession AWUT00000000.1, see (Chiu et al.

2013)). In few cases (supplementary table S1, Supplementary

Material online), we could recover only incomplete D. suzukii

genes, likely because of the shorter length of the scaffolds in

the genome of the Italian strain compared with the American

one. In these cases, we used the American genome assembly

as a database to retrieve full-length gene sequences. In few

other cases, genes had more than a copy in the Italian

D. suzukii genome, but such copies were extremely similar,

with only few SNPs at synonymous sites; a cross-check with

A B

FIG. 1.—Evolution of ORs on the Drosophila phylogeny. A: Distribution of gene gains (above branches, in bold) and losses (below branches) on a

cladogram depicting phylogeny of 14 Drosophila species; values at the right of each terminal or internal nodes are the number of genes calculated by

BadiRate using BDI-FR-CML model. Alternative positions of genes for which there is no reconciliation of gene trees (supplementary fig S2, Supplementary

Material online) with BadiRate distribution are highlighted in red. B: Distribution of the gene family size rate variation mapped on a time-tree. Each branch in

the tree has overall rate of variation (rate of gain + rate of loss/(divergence times)) followed by the beta (b) and delta (�) parameters describing, respectively,

birth and death rates from the BadiRate analysis. b and � values are rounded at the fifth integer. C: boxplots of overall rate of variation, beta, and delta.
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the American genome retrieved only one copy, suggesting

that they were allelic variants still segregating in the Italian

strain (which had been sequenced at the only partially homo-

zygous inbred generation F5; Ometto et al. 2013).

For orthologous genes, we followed the nomenclature of

the D. melanogaster receptor, adding a two-letter prefix cor-

responding to the species’ name. For example, DmOr10a cor-

responds to the olfactory receptor 10a of D. melanogaster,

and DbObp1 to the D. biarmipes odorant binding protein 1.

Paralogs (i.e. duplicates) in D. suzukii and D. biarmipes were

named with consecutive numbers: for example, Or67a has 5

copies in D. suzukii, which are named as DsOr67a1,

DsOr67a2, DsOr67a3, DsOr67a4, and DsOr67a5. Annotated

CDS are presented in dataset S1 (Supplementary Material

online).

Gene Trees

To help in the gene annotation process and to understand the

evolutionary history of the genes, we constructed six-species

gene phylogenies for each of the 3 gene families (OR, OBP,

and aIR). The gene and protein sequences for Drosophila

erecta, Drosophila ananassae, and Drosophila pseudoobscura

were downloaded from FlyBase (Drysdale et al. 2005) and

their orthologous relationships predicted by OrthoDB

(Waterhouse et al. 2013). We then added the orthologs of

D. melanogaster, D. suzukii, and D. biarmipes, and built mul-

tiple sequence alignments at both nucleotide and protein level

for each of the 3 families with MUSCLE (Edgar 2004) using

TranslatorX (Abascal et al. 2010); we did not use PRANK

(Löytynoja and Goldman 2005) because of its unpermissive

computational cost for this data set. The resulting alignments

were manually checked and edited to avoid possible mislead-

ing signals in the phylogeny. In case of frame shifts (e.g.,

Or22a, Or85a, Or74a), we restored the coding frame by

adding an appropriate number of single-base insertions.

Phylogenies were inferred in a maximum likelihood frame-

work using RAxML version 7.2.8 (Stamatakis 2014), boot-

strapping the data set with 100 pseudo-replicates, and

using protein sequences with a PROTGAMMA + LG + F

model (which has been shown to significantly fit a variety of

protein families better than other empirical replacement

models (Le and Gascuel 2008)).

Species Trees

We mapped the evolution of each of the 3 gene families on a

14 Drosophila-species cladogram using the tree topology pro-

posed by Ometto et al. (2013). We estimated the gene family

size at each internal node and the family turnover rates for

each branch using stochastic models implemented in BadiRate

version 1.35 (Librado et al. 2011). The program uses the in-

formation of the divergence time and the number of genes in

the extant species to model changes in gene family size along

the phylogenetic tree: divergence times were taken from

Ometto et al. (2013), whereas the data matrix of extant

genes for 12 species was inferred from Gardiner et al.

(2008) and Vieira et al. (2007), and, for D. suzukii and D.

biarmipes, from the present study (supplementary table S2,

Supplementary Material online). For BadiRate calculations, we

used the BDI-FR-CML model, where a maximum likelihood

model that assumes independent evolution along each

branch is used to calculate the probability of a gene family

to have a given size at each internal node. To define which

genes had been gained/lost at each node of the Drosophila

phylogeny, we manually mapped the gene information from

the data matrix onto our phylogenetic framework. We also

evaluated the overall rate of evolution on the time tree as Rate

of Expansion + Contraction = (No. of gene gains + No. of gene

losses)/Divergence time (to the Present in mya).

Molecular Evolution Analyses

We aligned orthologous gene sequences of D. suzukii, D.

biarmipes, D. melanogaster, D. erecta, and D. ananassae

with PRANK (Löytynoja and Goldman 2005), without provid-

ing a guide tree, using the tool TranslatorX (Abascal et al.

2010). When performing test for positive selection, we used

both the raw alignment and one in which we removed regions

of high complexity to minimize false signals of rapid evolution.

For the latter approach, we removed gaps using Gblocks

(Castresana 2000) and then used a custom perl script to

remove problematic alignment regions using an approach

similar to that proposed by Han et al. (2009). We translated

the alignment and flagged, in each sequence i, those portions

of length� 5 amino acids with more than fi x 60% differences

at the amino acid level and fi x 50% at the nucleotide level

compared with the consensus. The parameter f was used to

adjust for the species-specific divergence and was set to

f = 0.6 for the orthologs of D. suzukii, D. biarmipes, and D.

melanogaster; f = 0.8 for D. erecta; and f = 1 for D. ananassae.

When needed, amino acids conserved across orthologs were

de-flagged if at the edge of such portion. Finally, we removed

the portions of the alignment flagged in at least one se-

quence. On average (standard deviation), this approach re-

moved 67.2 (75.6) amino acids from the alignments,

corresponding to 7.2 (7.3) % of the original alignment

length. We used PAML 4.7 (Yang 2007) to estimate the rate

of non-synonymous, dN, and synonymous substitution, dS,

using the “free-ratio” model, which allows branch-specific

values for o= dN/dS over all branches of the unrooted phylo-

genetic tree. In case of duplications in D. suzukii, the analysis

was done for each paralog separately. In case of paralogs in

the other species, we first estimated the maximum likelihood

best tree and then retained the paralog(s) with the shortest

branch length and/or that was closer to the other orthologs.

We tested for different selective regimes and positive selection

in each gene (and, for D. suzukii, in each paralog) using two-

codon-substitution model-based tests. In the branch test, we
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compared the likelihood of a model that assumed a single o
across branches (model = 0 and NSsites = 0) with a second that

assumed two o values, one for the D. suzukii branch and one

for the rest of the tree (model = 2 and NSsites = 0). In the

branch-site test, we explicitly tested the occurrence of positive

selection affecting sites along the D. suzukii branch (branch-

site model A, test 2; model = 2 and NSsites = 2; null model has

parameters fix_omega = 1, omega = 1; the positive selection

model fix_omega = 0, omega = 1). In both tests, the value of

twice the difference between the two alternative likelihoods

(2��) was tested using a �2 test with 1 degree of freedom. To

account for multiple testing, we estimated the false discovery

rate (FDR) of each test using the qvalue (Storey 2002) package

implemented in R (R Development Core Team 2009).

Ligands Response Screening

We mined the literature and the DoOR (v.2) database

(Muench and Galizia 2015) for the chemicals that elicit elec-

trophysiological response in (or are associated with) ORs,

OBPs, and aIRs in D. melanogaster or closely related species.

We were interested in evaluating whether certain chemicals or

chemical classes were over- or under-represented among

those eliciting a response in the ORs duplicated (or lost) in

D. suzukii. We therefore developed a quantitative screening:

from each of the ORs listed in DoOR (v.2), we selected up to a

maximum of 15 ligands eliciting them over a modeled re-

sponse threshold of 0.3 (on a normalized scale from -1 to 1)

and counted their occurrence (L) in the 10 ORs that experi-

enced duplication or loss in D. suzukii (ORS) and in the remain-

ing 27 ORs for which DoOR (v.2) provides accurate response

data (ORR). These values were then compared by measuring

the skew index S = (LORS/10-LORR/27)/(LORS/10 + LORR/27),

which takes values between -1 (ligands bind only to ORR)

and 1 (ligands bind only to ORS).

Or85a Population Screening

To confirm the presence of two different Or85a alleles in D.

suzukii, we performed PCR analysis on DNA extracted from an

Italian (from Trentino, reared in our lab) and a North American

population (from Oregon, provided by Dr. Vaughn Walton,

Oregon State University, USA). Both populations were reared

under controlled standard laboratory conditions. We designed

two allele-specific forward primers (F85a.1 and F85a.2) with a

single reverse primer (R85a) shared by both alleles (supple-

mentary table S3, Supplementary Material online). F85a.1

was designed on a region present on the Italian strain, and

missing in the American genome. F85a.2 was designed to

confirm the missing first transmembrane domain in the

American genome and to confirm the size-specific variant

presence in both of the strains. This primer is covered to con-

firm the presence of upstream of the missing 5’UTR in

American genome. PCR analysis was done in 20ml reaction

mixture using 1ml of DNA template, 0.5ml of 10uM primers,

and GoTaq� Green Master Mix (Promega) under following

conditions: a denaturing step at 95 �C for 5 min, followed

by 35 cycles (95 �C for 30 s, 50 �C for 30 s, 72 �C for 30 s),

and a final step of 7 min at 72 �C. PCR products were electro-

phoresed on a 2% agarose gel, stained with ethidium bro-

mide, and visualized under UV light.

Single-Sensillum Recordings

We conducted all experiments on wild strains of D. melano-

gaster and D. suzukii collected in Trento Province (Italy), and

reared on a semi-artificial diet (https://stockcenter.ucsd.edu/

info/food_cornmeal.php, last accessed July 15, 2016) at 23-

25�C, 65 ± 5% relative humidity (R.H.), and 16L:8D photope-

riod. Flies were gently blown head first into a cut pipette tip so

that the head protruded from the narrow end. The pipette tip

was placed on a wax surface on a microscope slide and we

used a glass micropipette to bend backwards and stably po-

sition the right antenna on a cover slip. The preparation was

placed under a microscope (Olympus BX51W1), with a mag-

nification� 1500�, where a 1 l/min charcoal purified and hu-

midified airflow was constantly blown over the fly head. To

record the action potentials of antennal sensory neurons, we

used tungsten microelectrodes sharpened in a KNO2-solution,

which we positioned using a motor-controlled micromanipu-

lator (Märzhauser DC-3K, Wetzlar, Germany) equipped with a

piezo unit (Märzhauser PM-10). A reference electrode was

inserted into the eye with a manually controlled micromanip-

ulator (Narishige MM33, Tokyo, Japan). A Syntech SFC-1/b

stimulus controller delivered 0.5-s-long odor stimulations

into the airstream at 0.5 l/min. Stimulus pipettes contained a

12.7-mm disc (Sigma-Aldrich, St. Louis, Mo, USA) onto which

5ml of synthetic odors in paraffin oil was pipetted. After A/D

conversion using an IDAC-USB (Syntech), the electrophysio-

logical responses were fed into a PC for further analysis using

AutoSpike 3.2 software (Syntech, Kirchzarten, Germany).

Y-Tube Olfactometer Bioassays

Flies were separated based on sex upon hatching, then 3-day-

old females and males were put together in a vial and allowed

to mate; only mated females (starved overnight) were used in

the subsequent behavioral assays. Isopentyl acetate (IPA here-

after, purity> 97%; Sigma-Aldrich, Milan, Italy) was loaded

on red rubber septa (Wheaton, 20-mm straight plug stopper,

Millville, NJ, USA) in doses of 1, 10, and 100mg per septum

using hexane (> 99% purity, Sigma-Aldrich) as solvent. The

rubber dispensers with the solution were kept for 1 hr in a

climatic chamber (25 ± 2 �C and 60 ± 5% R.H.) before starting

the experiment to allow solvent evaporation and to equili-

brate. Behavioral bioassays were conducted using a Y-tube

olfactometer to evaluate the response of mated females

flies toward IPA (olfactometer size: stem = 30 cm; arm

length = 20 cm; arm angle = 60�; internal diam. = 4 cm)

(Revadi et al. 2015). Each dose of IPA was tested against a
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control consisting of a rubber septum with hexane only. The

air was filtered with activated charcoal, humidified using dis-

tilled water, and uniformly pumped through the olfactometer

arms at 250 ml/min. We introduced single flies into the olfac-

tometer at the entrance of the main stem and observed them

until they made a “choice” or until 5 minutes elapsed (in this

case they were recorded as “no choice”). To minimize any

spatial effects, the arms were switched after having tested five

females. We performed five replicates for each dose of IPA,

with each replication comprising 20 flies. After every replica-

tion, the olfactometer was rinsed with water and absolute

ethanol, and baked overnight at 200 �C.

Results

The Repertoire of Olfactory Genes in D. suzukii, D.
biarmipes, and Other 12 Drosophila

We identified and manually annotated the complete reper-

toire of OR, OBP, and aIR genes present in the genomes of D.

biarmipes and D. suzukii (supplementary table S1, dataset S1,

Supplementary Material online). The automatic approach

(based on querying predicted proteomes using the 12

Drosophila orthologs) and the manual approach (based on

querying non-annotated genomes using D. melanogaster

orthologs) retrieved similar results, although the second iden-

tified more putative orthologs in both D. suzukii and D. biar-

mipes. For example, in D. suzukii, only the manual approach

identified four genes—DsOr47b, DsOr35a, DsOr82a,

DsOr23a4, and two genes that lost their original function—

DsOr22a and DsOr74a. By combining the two approaches, we

could recover more orthologs in D. biarmipes (DbOr98b,

DbOr49a2, DbOr92a, DbOr67a2, DbOr67a5, DbOr42a) com-

pared with a recent annotation by Hopf et al. (2015). The

recursive annotation strategy was successful in highlighting

false-positive duplications, which were ultimately identified as

allele variants in the partially heterozygous D. suzukii genome,

as well as in revealing a duplication (Or19a) and two putative

isoforms (Or42a) that were missed in a previous screening

(Revadi et al. 2015). From a methodological point of view,

our results indicate that for fragmented genomes like that of

D. suzukii and D. biarmipes, the best annotation approach is to

directly perform a BLAST search on the genome and manually

assemble hits on reference orthologs, even if it is more time-

consuming than the more conventional de novo approach.

Opposite to what is observed for ORs and OBPs, our anno-

tations indicate conservation of the aIR gene family size

among the Drosophila species. The OR gene family proved

to be extremely dynamic in the branch leading to D. suzukii

(fig 1), with eight gene gains (duplications of Or19a, Or49a,

Or59a, Or59c, Or67a and quadruplication of Or23a), two

genes that likely lost their original function (Or85a, Or74a;

see below on how we defined a change of function), and

two new isoforms (the locus of Or42a has three likely

transcription start sites). In the branch leading to D. suzukii

and D. biarmipes, we further identified a loss of function for

Or22a, a loss of Or98a, duplications of Or65c and Or22b, and

a quadruplication of Or67a. In D. suzukii, all OR duplications

arose by tandem replication. Concerning OBPs, we identified

three changes in the D. suzukii repertoire, namely, duplica-

tions in Obp46a and Obp47a and loss of Obp18a.

Species Tree: Accelerated Evolution of Olfactory
Receptors in D. suzukii, the Obscura Subgroup,
and the Simulans Complex

In D. suzukii, we observed a noticeable departure in the evo-

lutionary patterns of OR and OBP gene families compared

with other Drosophila species (figs 1 and 2). We found the

overall rates to be concordant with the birth and death rates

(b-Beta and �-Delta parameters) calculated by BadiRate

(figs 1B and 2B, supplementary fig S1B, Supplementary

Material online). In the case of OR, both the overall rate of

expansion and the normalized b (1.36 and 0.018, respectively)

are among the highest in the phylogeny (black branch in fig

1B, boxplots in fig 1C). An overall turnover rate higher than 1

is present only in four other species, two from the simulans

complex (D. simulans and D. sechellia, colored in blue in fig 1B)

and two from the obscura group (Drosophila pseudobscura

and Drosophila persimilis; see outliers in the boxplots of fig

1C). The overall number of events is in fact higher in D. suzukii

(n = 10) than in these four species (n = 3 to 7), but occurred

during a longer evolutionary time scale. Similarly, some inter-

nal branches are characterized by an extremely high number

of events and relatively low rates (for example, the branch

leading to Drosophila grimshawi and Drosophila willistoni),

although the extremely incomplete taxon cautions against

its information content. Turnover rates of OBPs are in general

much lower than those of ORs for all the species (fig 2).

Drosophila suzukii, and the branch leading to D. suzukii plus

D. biarmipes (respectively, in red and gray/asterisk in fig 2B

and 2C) are, however, outliers, as are Drosophila yakuba, D.

erecta, D. sechellia (respectively, orange, purple, and blue in

fig 2B and 2C), and the node leading to the Sophophora

subgenus: these branches fall outside the internal quartile

that groups the majority of the remaining branches.

Conversely, aIRs evolve similarly in most Drosophila species,

both in terms of rate of evolution and gene family size; we

could only find one gain in Drosophila mojavensis and one loss

in D. sechellia and in D. biarmipes (supplementary fig S1,

Supplementary Material online). Notably, D. sechellia and D.

suzukii are the only two species to show both a high OR and

OBP turnover rate.

Because BadiRate does not take into account individual

gene phylogenies, we examined the reconciliation between

the single gene trees and the inferred gene birth–death distri-

bution. Results indicate that for most subfamilies, there is per-

fect concordance (details are in supplementary fig S2,
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Supplementary Material online), whereas in few cases (Or22a/

b, Or23a, Or67a, Or98a), the gene tree indicates an alterna-

tive distribution of gains and loss (depicted in red in fig 1A and

1B). The different interpretation of such gene distribution in D.

suzukii would imply an extra loss in Or22a, and one less du-

plication of Or23a and/or Or67a and one extra duplication of

Obp57d, therefore leaving the overall rate of gene family var-

iation in D. suzukii similar if not higher than the one obtained

with BadiRate. Even dismissing the BadiRate distribution com-

pletely, D. suzukii is undisputedly characterized by the highest

number of ORs in the melanogaster group (67, compared

with an average of 60).

Gene Trees: Evolutionary Events for Odorant Receptors
Are Not Randomly Distributed in D. suzukii

Seven out of the 10 gains/losses that characterize ORs in D.

suzukii are clustered in a well-supported sub-family of ORs

(bootstrap support BS = 71, gray box in fig 3). This sub-

family accounts for less than one-third of the whole OR

family (16 out of 60), but contains the majority of gains/

losses that characterize D. suzukii, indicating a significant de-

parture from a random distribution of genomic events on the

phylogeny (Fisher exact test, two-tailed P = 0.002). The only

other species for which the test scored significantly are D.

ananassae in the melanogaster group, and D. grimshawi and

Drosophila virilis from the Drosophila subgenus (supplemen-

tary table S4, Supplementary Material online). The distribution

of events for the OBPs was not assessed because their phylo-

genetic relationship could not be resolved with significant sup-

port (supplementary fig S3A, Supplementary Material online).

Signs of Positive Selection in D. suzukii’s Duplicated
Odorant Receptors

In all species, OR, OBP, and aIR genes are under similar se-

lective pressures, as measured by dN/dS (P> 0.05 for all

comparisons; see supplementary table S5, Supplementary

Material online). Mean dN and dN/dS were similar in D.

suzukii and D. biarmipes in all functional classes (P>0.1),

A B

FIG. 2.—Evolution of OBPs on the Drosophila phylogeny. Same caption as in fig 1.
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whereas dS was significantly lower in D. suzukii than in D.

biarmipes for ORs (P< 0.001; as observed at a genome-wide

scale (Ometto et al. 2013)), but not for OBPs (P = 0.351). We

found a total of 22 genes showing signs of different selective

regimes and positive selection in D. suzukii (supplementary

table S6, Supplementary Material online); after correcting for

multiple testing, the number dropped to 15 genes (9 ORs, 4

OBPs, 2 aIRs; see also stars in fig 3 and boxes in fig 4). Similar

results were obtained when analyzing alignments from

which we removed problematic regions that could produce

false-positives for fast evolution. Overall, the results of our

analyses indicate that D. suzukii chemosensory genes are

under similar evolutionary forces when compared with the

closely related D. biarmipes and with D. melanogaster. In the

FIG. 3.—Phylogenetic tree of ORs. Most of the genomic events detected in D. suzukii (duplications, losses, loss of function, positive selection, see legend)

cluster significantly in one subfamily highlighted with gray shade. The tree is inferred using the protein sequences from the entire gene families of 6 species

(D. melanogaster, D. erecta, D. suzukii, D. biarmipes, D. ananassae, and D. pseudoobscura). Support at selected node is the bootstrap support from the

analysis of 100 pseudo-replicates. D. suzukii sequences are highlighted in red.
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case of D. suzukii, we found that ORs that underwent dupli-

cation are more likely to also experience positive selection

(Fisher exact test, two-tailed P = 0.012), as expected for this

type of duplicated genes (Almeida et al. 2014). This bias was,

however, not observed in OBP genes (P = 0.33).

The Putative Chemical Responses of Duplicated/Lost
Odorant Genes in D. suzukii

Most of the duplicated/lost/under positive selection ORs in

D. suzukii (fig 4) respond in D. melanogaster to medium-

sized esters (Or22a, Or42a, Or59c, Or67a, Or98a, but also

Obp18a), to similarly sized fatty alcohols (Or74a, Or85a),

and to large although chemically unrelated cyclic compounds

(Or19a, Or59a, Or98a). These patterns are confirmed by a

quantitative screening of the DoOR (v.2) database, which

reveals a variety of esters such as ethyl-butyrate, methyl-

hexanoate, pentyl-acetate, and isopentyl-acetate occurring

more frequently in duplicated/lost ORs of D. suzukii and

more represented in these ORs than in all other tested ORs

(see skew indexes in supplementary table S7, Supplementary

Material online). Two of the ORs that lost their original func-

tion in D. suzukii (Or85a and Or22a) bind with high affinity to

ethyl 3-hydroxybutyrate and ethyl (and methyl) hexanoate,

compounds associated with yeast and bacterial fermentation

(Antonelli et al. 1999). Another OBP gene, Obp57d, is tripli-

cated in both D. suzukii and D. biarmipes and is involved in

detecting hexanoic and octanoic acids, which are toxic for

Drosophila in general, but not to D. sechellia (Matsuo et al.

2007; Harada et al. 2012).

Gene Structure Reveals Loss of Function of Key
Receptors and Different Alleles in Italian and
American Strains of D. suzukii

In D. suzukii, the amino acid sequences of two ORs (Or22a

and Or85a) present deletions that compromise their reading

frame, but otherwise retained high sequence similarity with

their D. melanogaster orthologs. These genes are character-

ized by the presence of stop codons and frameshifts in the

D. suzukii portion of the sequences matching the D. melano-

gaster exons (fig 5A and 5D). Because Or22a and Or85a are

transcribed, there is an intriguing possibility that these

changes did not cause a pseudogenization of the gene, but

rather are associated to a change in function. The aforemen-

tioned “deleterious” changes are indeed found in portions of

the exons that are missing in the transcripts (available only for

the American strain, Bioproject Accession: PRJNA221549),

FIG. 4.—Biological and ecological interpretation of the most relevant genomic events in D. suzukii. Each of the chemosensory genes experiencing

duplication, loss, non-functionalization, or positive selection in D. suzukii are listed along with the ligands they respond to in D. melanogaster according with

the DoOR (v.2) database (Muench and Galizia 2015); a proposed behavioral ecological explanation is given. As many chemical ligands are associated with

each of the receptors, we have reported only the three compounds eliciting the highest responses in the database.
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suggesting new exon structures and novel splicing patterns

that resulted in at least one transmembrane region being lost

in each gene when compared with the D. melanogaster

orthologs. On the other hand, a third receptor, Or74a, is

more likely a pseudogene because it retains poor similarity

with the ortholog in other species (supplementary fig S4,

Supplementary Material online).

Unexpectedly, the sequences of these three genes in the

Italian and the American strains are characterized by a differ-

ent set of putative stop codons and frame shifts. We further

investigated and validated these differences in the gene

Or85a. The F85a.1/R85a primer set, designed to confirm the

presence of first transmembrane helix in both strains, ampli-

fied only in the Italian strain (fig 5B). This observation confirms

that the genomic region covering the first transmembrane

helix is completely absent from the American strain (dotted

line in fig 5A). The primer set F85a.2/R85a further confirmed

the presence of a gene size polymorphism in the American

and the Italian populations: whereas all the 11 tested

American flies have short alleles, we could also amplify a

longer allele in the Italian population (fig 5C). Furthermore,

in some of the Italian samples, the amplification of the long

allele was accompanied by a very faint signal of amplification

of the short one, suggesting a possible third allele in which the

region close to the deletion contains a mutation preventing an

efficient binding of the primer.

Sensory Physiology Shows Altered Responses of Key
Neurons

Single-sensillum recordings from the large basiconic sensilla

that house neurons expressing Or85a (ab2B) and Or22a

(ab3A) in D. melanogaster demonstrated that the D. suzukii

A

B

D

C

FIG. 5.—Different non-functional ORs in American and European populations. The structure of the predicted coding sequences (CDS) of Or85a (panel A)

and Or22a (panel D) from the genome analysis of the Italian (IT) and American (US) strains of D. suzukii. For the American strain, we also provide the CDS

from transcriptome (Chiu et al. 2013). Dotted lines in D. suzukii indicate that the CDS is missing either from the genomes or the transcriptome. B and C:

agarose gel (2%) electrophoresis of different splice variants present in different individuals of American and Italian D. suzukii populations: US – American

strain, IT – Italian strain, L – Ladder.
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cognate neurons have a strongly shifted response profile com-

pared with D. melanogaster. In D. melanogaster, the ab2B

neuron is tuned to oxidized esters typical of rotten fruit like

ethyl 3-hydroxybutyrate, whereas our recordings demonstrate

that in D. suzukii, this neuron does not respond to this odor

(fig 6A). Conversely, in D. suzukii, this neuron has acquired an

increased affinity for 2-heptanone, supporting a loss of func-

tion of its cognate receptor Or85a (see also (Keesey et al.

2015)), and a likely replacement by another OR. Similarly,

whereas in D. melanogaster, the ab3A neuron responds

strongly to ethyl and methyl hexanoate (see also (Andersson

et al. 2012)), D. suzukii has lost its high sensitivity to these

compounds and acquired an increased sensitivity for ethyl ac-

etate (fig 6B). Response of neuron expressing Or74a was not

tested, as in D. melanogaster, this receptor is expressed during

the larval stage (Kreher et al. 2005). The results of the Y-tube

olfactometer bioassay showed that D. suzukii is significantly

more attracted by low doses of the ester IPA than D. melano-

gaster (fig 6C; Pearson �2 tests: 1 mg: �2=4.44, df = 1,

P = 0.03, 10 mg: �2=1.78, df = 1, P = 0.18, 100 mg: �2=1.8,

df = 1, P = 0.17).

Discussion

Is Natural Selection Shaping the Evolution of
Chemosensory Genes in D. suzukii?

Chemosensory gene families such as ORs are widely recog-

nized to evolve according to a birth-and-death process (Vieira

and Rozas 2011). This process assumes that genes are ran-

domly gained or lost by local genomic events, and that dupli-

cates can stay in the genome for long time; then their final

A B

C E

D

FIG. 6.—Behavior and sensory physiology. A and B: Response profiles of ab2B and ab3A neurons in D. suzukii compared with D. melanogaster support a

shift of function for their Or85a and Or22a receptors. On the x-axis, we have EtAc – ethyl acetate, Et3But – ethyl 3-hydroxybutyrate, EtBut – ethyl butyrate,

MeHex – methyl hexanoate, EtHex – ethyl hexanoate, 2Hepton – 2 heptanone, E3Heol – (E)-3-hexenol. C: Y-tube olfactometer bioassay shows that

D. suzukii is significantly attracted by a reduced amount of IPA, in support of a high turnover rate for IPA receptors. D: Sample traces of aB2b neurons in

D. suzukii and D. melanogaster in response to ethyl-3-hydroxy butyrate (at 10-3 dilution) 0.5-s stimulation. E: Proposed receptor replacement in D. suzukii.
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fate (loss, fixation of duplications, gain of function) is mostly

defined by a combination of drift and selection, that is, by

whether and to what extent these events affect the fitness

(Vieira et al. 2007). In the case of D. suzukii, but also a few

other species, we observe an increase in the birth-and-death

rate of the OR (and to a lesser extent OBP) gene families rel-

ative to other lineages (figs 1C and 2C). Although there is not

perfect reconciliation between BadiRate inferences and indi-

vidual protein trees, the turnover rates remain high for D.

suzukii, even assuming a different distribution of events.

Such high rates suggest a novel selective regime permitting,

or favoring, the high turnover of OR genes in D. suzukii. A

further indication that selection may have played a major role

in shaping the duplication pattern in D. suzukii receptor genes

comes from the observation that duplications and deletions

are not randomly distributed along the gene phylogenies.

Instead, a subfamily of D. suzukii OR genes are clearly subject

to higher rates of duplication/loss (fig 3): this formally violates

a neutral birth-and-death process, which assumes random

distribution of the mutational events. This pattern is observed,

although with less significance, only in three other Drosophila

species (D. ananassae, D. virilis, and D. grimshawi) among the

14 included in our study. Genes under diversifying selection

are also non-randomly distributed and tend to cluster within

the same subfamilies that experience high duplication/loss

rates, consistent with a non-neutral pattern of evolution in

these genes (Almeida et al. 2014).

Apart from D. suzukii, the only other Drosophila character-

ized by high turnover rates of both OR and OBPs is D. sechellia,

a species for which there is ample evidence of a link between

the evolution of chemosensory genes and adaptation to a

new ecological niche (Dekker et al. 2006; Matsuo et al.

2007; McBride 2007; Ibba et al. 2010; Harada et al. 2012):

our results suggest that such a link may also be valid for D.

suzukii. While mutational events (deletions, duplications, point

mutations) occur randomly, their fixation is not necessarily

stochastic; in the case of D. suzukii, selective fixation of certain

mutational events may have instead been favored by natural

selection. We can hypothesize the effect (likely combined) of

two different processes. In the first, relaxed selective pressures

have allowed the fixation of gene deletions. In the second,

natural selection may have favored the retention of gene du-

plicates. The observation that such high dynamism occurs

within a single clade of ORs suggests that in D. suzukii,

there has been a shift in the perception of the ligands that

characterized such an OR clade (gray shade in fig 3). In any

case, we can hypothesize that a modification of the chemo-

sensory system, and the associated assortment of receptor

genes, accompanied the change in the reproductive lifestyle

of D. suzukii. This hypothesis is compatible with patterns of

molecular evolution observed across the olfactory genes,

whereby the mean level of selective pressure is similar be-

tween D. suzukii and other species, while some of the single

duplications have undergone positive selection (see

supplementary table S6, Supplementary Material online).

These results, coupled with the high birth rates, suggest that

ecological adaptation in D. suzukii occurred through an in-

creased acceptance of gene duplications and losses and nat-

ural selection favoring the fixation of novel mutations in (some

of) the duplicates.

The Ecological Significance of Duplication Events in
D. suzukii

It is not straightforward to generalize the biological signifi-

cance of the many duplications and losses that characterize

ORs in D. suzukii, as these receptors are elicited by a large

assortment of ligands (fig 4). Moreover, although being the

most comprehensive source for receptor-ligand data, the

DoOR (v.2) database has important limitations: first, it is not

based on all possible ligands; second, it is biased toward ex-

periments conducted on D. melanogaster; and finally, in some

cases, it reports results of ligand concentrations that are not

found in nature. Consequently, this database may be prone to

both false-negatives and false-positives, so that our discussion

of the ecological significance of the ORs (and their ligands) is

speculative. Nonetheless, our analyses point toward a role of

fatty alcohols, aromatic compounds, and especially esters,

which are clearly over-represented as ligands of duplicated/

lost genes (compared with all other ORs) in D. suzukii (supple-

mentary table S7, Supplementary Material online). Among

esters, the most represented are ethyl butyrate and IPA; the

latter is present in many ripening soft fruits that host D. suzukii

(Revadi et al. 2015), and is also released at a much higher

concentration by fermenting materials such as wine and vin-

egar (Cha et al. 2013). Our behavioral assays demonstrate that

egg-laying females of D. suzukii are indeed attracted by lower

amount of IPA than D. melanogaster are (fig 6C). We specu-

late an adaptive scenario in which D. suzukii has tuned its

chemosensory system to better discriminate the odor blend

from ripening fresh fruit (e.g., releasing low amount of IPA),

from rotting ones (releasing higher amount of IPA). Our results

further point toward Or19a and Or59a, which are duplicated

in D. suzukii and respond to different types of aromatic vola-

tiles in D. melanogaster, suggesting a change in the response

to cyclic/aromatic compounds in D. suzukii, an hypothesis that

finds confirmation in the analysis by Keesey et al. (2015).

Possible Loss of Receptor Function (and Replacement) of
Key Odorant Receptors

Or85a and Or22a are interesting cases of loss of original odor-

ant function in, respectively, D. suzukii and the branch leading

to D. suzukii plus D. biarmipes. In Drosophila, OR genes are

characterized by 7 conserved transmembrane helices (7TM,

Clyne et al. 1999), implying high structural constraints and

pervasive purifying selection. Despite this, in D. suzukii, all

three genes accumulated stop codons, frame shifts, and

indels in regions that otherwise code for transmembrane
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domains in D. melanogaster (and all Drosophila species in

general). These regions are not present in the D. suzukii

American Or85a and Or22a transcripts, suggesting that they

are removed post-transcription as part of a newly formed

intron or an untranslated region (5’-UTRs). Our gene annota-

tion indicates a putative Or85a protein that lacks the first

transmembrane domain (fig 5A), and Or22a proteins that

lack at least two transmembrane domains (fig 5D). Because

all the 7 transmembrane domains are needed for a correct

and functional 7TM folding, the loss of at least one transmem-

brane domain is a strong indication that these genes experi-

enced a loss of their original receptor function. Two lines of

evidence support the hypothesis that Or85a and Or22a may

be still functional. The first is that the coding sequences of

these genes are still under selective constraints: whereas in-

trons (including the newly formed ones) are fairly divergent

between the American and the Italian genome, exons are

highly conserved and did not accumulate deleterious muta-

tions. The second is that they are transcribed; this however

does not exclude that these genes may act as non-translated

transcripts as in the case of competing endogenous RNAs

(Welch et al. 2015). From an evolutionary perspective, our

data are consistent with a model where the new splice pattern

(and the consequent loss of the original OR function) evolved

in the D. suzukii common ancestor, followed by a relaxation in

selective pressure on the new non-coding region and the con-

sequent independent accumulation of stop codons and other

polymorphisms in the introns.

A loss of original function of Or85a and Or22a is confirmed

by our observation that the corresponding ab2B and ab3A

neurons shifted their affinity from volatiles typically produced

by yeast during fruit fermentation to volatiles more typical of

ripening fruit; this is in accordance with Keesey et al. (2015),

who further found an ab3A affinity for the leaf volatile cyclic

compound beta-cyclocitral. Because they lack at least one

transmembrane domain, it is very unlikely that the new iso-

forms of Or85a and Or22a are responsible for the new ligand

affinity. Our results rather point toward a scenario in which

Or85a and Or22a have been replaced in D. suzukii by other

ORs in the corresponding ab2B and ab3A neurons (fig 6E).

Our data do not allow proposing any specific ORs, but we

cautiously suggest as candidates the various genes that expe-

rience duplication or positive selection in D. suzukii (fig 4).

Overall, our results suggest that D. suzukii changed its re-

sponse to some of the compounds typical of decaying mate-

rials in general, which are the primary oviposition sites of most

other Drosophila species. This was achieved, at least partially,

by losing the original function of Or85a, a receptor that is

otherwise widely conserved among Drosophila (de Bruyne

et al. 2010), because it is linked with fermented foods, the

feeding source of most Drosophila species. As D. suzukii ovi-

posits on ripe fruits, but feeds on rotten substrate, the loss of

Or85a may primarily be involved in avoiding oviposition in

rotten fruits.

Utility of Identified Genes and Chemicals for
Downstream Applications

Our analyses revealed a list of ORs and binding proteins likely

involved in the unique biology of D. suzukii. Further research

should focus on functional analyses of new (duplicated) and

putatively lost/replaced receptors, and on mapping their ex-

pression pattern in the antenna, palp, and dorsal organ of

larvae. In this work, we have assayed the behavioral role of

one ester, IPA, and demonstrated that D. suzukii is attracted to

lower concentrates of IPA compared with D. melanogaster,

suggesting a possible use for species-specific, dosage-con-

trolled trapping systems. The results presented here will help

direct research efforts in the development of more targeted

odor-based trapping and control methods. Future works

should test those ligands for which there has been a shift in

chemosensation, particularly 1-hexanol, 2-heptanone, and

beta-cyclocitral, the two latter being putatively new ligands

of, respectively, ab2B and ab3A neurons in D. suzukii.

Evolution of Chemosensory Genes in Drosophila

While previous works on chemosensory genes have often con-

centrated on either genomics or physiology (Robertson et al.

2003; Guo and Kim 2007; Vieira and Rozas 2011; Becher

et al. 2012; Swarup et al. 2014; Keesey et al. 2015), in this

study, we combined the two to gain a broader and more in-

depth knowledge of their evolution (Goldman-Huertas et al.

2015). Furthermore, by comparing the birth–death trees with

their corresponding gene trees, we could assess which genes

have been lost or gained in each of the Drosophila species

(detailed in figs 1 and 2), thus obtaining much more informa-

tion than if concentrating only on the quantitative aspect of

the evolution of duplicated/lost genes on the gene phylogeny

(Guo and Kim 2007; McBride and Arguello 2007; Vieira and

Rozas 2011, but see Robertson 2009). These results may serve

for future chemical ecological studies involving the various

Drosophila species we have studied. From a quantitative

point of view, our results confirm that the evolution of che-

mosensory genes in Drosophila is quite dynamic, with signif-

icant variation in the birth and death processes affecting some

lineages and gene subfamilies: OBPs and especially ORs are

extremely variable families, while aIR are fairly conserved

throughout the species tree. Our distribution of gene gain/

loss along Drosophila phylogeny slightly differs from infer-

ences made on a more restricted sample of (Guo and Kim

2007, McBride and Arguello 2007). For example, some of

the gains (Or67a, Or65c, and Or85a) that were previously lo-

cated on the branch subtending the melanogaster subgroup,

in our analysis, are located on the branch subtending the

whole melanogaster group.

It has to be pointed out that, like in other studies, our

comparative analysis is biased by the available sampling of

species, which is extremely poor outside the Sophophora lin-

eage. Therefore, although the changes we observe, for
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example, in the branch subtending D. sechellia are good de-

scriptors of the evolutionary events that characterize this spe-

cies, the events on the branch subtending D. ananassae are

not species-specific, but rather characterize the whole ananas-

sae subgroup. The case of D. suzukii is somehow in-between,

because D. biarmipes is a fairly closely related species. Another

of its closely related species, Drosophila subpulchrella, has not

been included in our analyses: if D. subpulchrella is the actual

sister species to D. suzukii, then some of the evolutionary

events we have ascribed to D. suzukii may instead be shared

by both species. The genome of the D. subpulchrella is being

analyzed in our lab and annotations of its gene repertoire with

that of D. suzukii will clarify this issue.

Conclusions

Our results describe the genome evolution behind some of the

peculiar biology of an emerging pest and further instruct us

over the general evolution of chemosensation in animals.

Results indicate that the evolution of the D. suzukii’s olfactory

genes repertoire, particularly ORs, is different from that of

most other Drosophila species: we have shown that D. suzukii

is the only species to show both a high OR turnover rate and a

non-random distribution of OR events, suggesting distinct se-

lective forces possibly imposed by a shift in their chemo-eco-

logical environment. The most convincing cases we found for

D. suzukii are (i) a burst of duplications for genes with affinity

for some type of ligands, particularly esters, which may have

resulted in enhanced sensitivity for small dosages of IPA; and

(ii) a loss of function for receptors with high affinity for vola-

tiles associated with fermentations. These genes, as well as all

the other genes listed in fig 4 and their putative ligands, are

good candidates for downstream applied physiological and

behavioral experiments.

Supplementary Material

Supplementary dataset S1, figures S1–S4, and tables S1–S7

are available at Genome Biology and Evolution online (http://

www.gbe.oxfordjournals.org/).
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