47 research outputs found

    The plasma proteome and the acute phase protein response in canine pyometra

    Get PDF
    Canine pyometra is a common inflammatory disease of uterus in sexually mature bitches caused by secondary bacterial infection, leading to change in plasma proteins associated with the innate immune system. Proteomic investigation is increasingly being applied to canine diseases in order to identify and quantify significant changes in the plasma proteome. The aim of the study was to assess and quantify changes in plasma proteome profiles of healthy and pyometra affected bitches using a TMT-based high-resolution quantitative proteomic approach. As a result, 22 proteins were significantly down-regulated including transthyretin, antithrombin III, retinol-binding protein, vitamin D binding protein, paraoxonase 1, and kallikrein, while 16 were significantly up-regulated including haptoglobin light chain, alpha-1-acid glycoprotein, C-reactive protein precursor, and lipopolysaccharide-binding protein in dogs with pyometra. Pathway analysis indicated that acute inflammatory response, regulation of body fluid levels, protein activation cascade, the humoral immune response, and phagocytosis were affected in pyometra. Validation of biological relevance of the proteomic study was evident with significant increases in the concentrations of haptoglobin, C-reactive protein, alpha 1 acid glycoprotein, and ceruloplasmin by immunoassay. Pyometra in bitches was shown to stimulate an increase in host defence system proteins in response to inflammatory disease including the acute phase proteins

    Energy dependence of multiplicity fluctuations in heavy ion collisions

    Get PDF
    The energy dependence of multiplicity fluctuations was studied for the most central Pb+Pb collisions at 20A, 30A, 40A, 80A and 158A GeV by the NA49 experiment at the CERN SPS. The multiplicity distribution for negatively and positively charged hadrons is significantly narrower than Poisson one for all energies. No significant structure in energy dependence of the scaled variance of multiplicity fluctuations is observed. The measured scaled variance is lower than the one predicted by the grand-canonical formulation of the hadron-resonance gas model. The results for scaled variance are in approximate agreement with the string-hadronic model UrQMD

    System size and centrality dependence of the balance function in A+A collisions at sqrt[sNN]=17.2 GeV

    Get PDF
    Electric charge correlations were studied for p+p, C+C, Si+Si, and centrality selected Pb+Pb collisions at sqrt[sNN]=17.2 GeV with the NA49 large acceptance detector at the CERN SPS. In particular, long-range pseudorapidity correlations of oppositely charged particles were measured using the balance function method. The width of the balance function decreases with increasing system size and centrality of the reactions. This decrease could be related to an increasing delay of hadronization in central Pb+Pb collisions

    System size and centrality dependence of the balance function in A + A collisions at sqrt s NN = 17.2 GeV

    Get PDF
    Electric charge correlations were studied for p+p, C+C, Si+Si and centrality selected Pb+Pb collisions at sqrt s_NN = 17.2$ GeV with the NA49 large acceptance detector at the CERN-SPS. In particular, long range pseudo-rapidity correlations of oppositely charged particles were measured using the Balance Function method. The width of the Balance Function decreases with increasing system size and centrality of the reactions. This decrease could be related to an increasing delay of hadronization in central Pb+Pb collisions

    Pion interferometry in Au+Au collisions at sqrt[sNN]=200GeV

    Get PDF
    We present a systematic analysis of two-pion interferometry in Au+Au collisions at sqrt[sNN]=200GeV using the STAR detector at Relativistic Heavy Ion Collider. We extract the Hanbury-Brown and Twiss radii and study their multiplicity, transverse momentum, and azimuthal angle dependence. The Gaussianness of the correlation function is studied. Estimates of the geometrical and dynamical structure of the freeze-out source are extracted by fits with blast-wave parametrizations. The expansion of the source and its relation with the initial energy density distribution is studied

    Deuteron production in central Pb + Pb collisions at 158-A-GeV

    Get PDF
    Experimental results on deuteron emission from central Pb+Pb collisions (E_beam=158A GeV, fixed target), obtained by NA49 at the CERN SPS accelerator, are presented. The transverse mass m_t distribution was measured near mid-rapidity (2.0<y<2.5) in the range of 0<m_t-m_0<0.9 GeV/c2 (0<p_t<2.0 GeV/c) for the 4% most central collisions. An exponential fit gives an inverse slope T_d=(450ą30) MeV and a yield dN_d/dy=0.34ą0.03. The coalescence factor B2(m_t=m_0)=(3.5ą1.0)ˇ10^4 GeV^2 and its m_t-dependence are determined and discussed in terms of a model that includes the collective expansion of the source created in a collision. The derived Gaussian size parameter R_G of the emission volume is consistent with earlier HBT results on the source of pion emission

    The ALICE experiment at the CERN LHC

    Get PDF
    ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries. Its overall dimensions are 161626 m3 with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008
    corecore