251 research outputs found

    Optogenetic manipulation of medullary neurons in the locust optic lobe

    Get PDF
    The locust is a widely used animal model for studying sensory processing and its relation to behavior. Due to the lack of genomic information, genetic tools to manipulate neural circuits in locusts are not yet available. We examined whether Semliki Forest virus is suitable to mediate exogenous gene expression in neurons of the locust optic lobe. We subcloned a channelrhodopsin variant and the yellow fluorescent protein Venus into a Semliki Forest virus vector and injected the virus into the optic lobe of locusts (Schistocerca americana). Fluorescence was observed in all injected optic lobes. Most neurons that expressed the recombinant proteins were located in the first two neuropils of the optic lobe, the lamina and medulla. Extracellular recordings demonstrated that laser illumination increased the firing rate of medullary neurons expressing channelrhodopsin. The optogenetic activation of the medullary neurons also triggered excitatory postsynaptic potentials and firing of a postsynaptic, looming-sensitive neuron, the lobula giant movement detector. These results indicate that Semliki Forest virus is efficient at mediating transient exogenous gene expression and provides a tool to manipulate neural circuits in the locust nervous system and likely other insects

    Optogenetic manipulation of medullary neurons in the locust optic lobe

    Get PDF
    The locust is a widely used animal model for studying sensory processing and its relation to behavior. Due to the lack of genomic information, genetic tools to manipulate neural circuits in locusts are not yet available. We examined whether Semliki Forest virus is suitable to mediate exogenous gene expression in neurons of the locust optic lobe. We subcloned a channelrhodopsin variant and the yellow fluorescent protein Venus into a Semliki Forest virus vector and injected the virus into the optic lobe of locusts (Schistocerca americana). Fluorescence was observed in all injected optic lobes. Most neurons that expressed the recombinant proteins were located in the first two neuropils of the optic lobe, the lamina and medulla. Extracellular recordings demonstrated that laser illumination increased the firing rate of medullary neurons expressing channelrhodopsin. The optogenetic activation of the medullary neurons also triggered excitatory postsynaptic potentials and firing of a postsynaptic, looming-sensitive neuron, the lobula giant movement detector. These results indicate that Semliki Forest virus is efficient at mediating transient exogenous gene expression and provides a tool to manipulate neural circuits in the locust nervous system and likely other insects

    IntCal04 terrestrial radiocarbon age calibration, 0-26 cal kyr BP

    Get PDF
    Author Posting. © Arizona Board of Regents on behalf of the University of Arizona, 2004. This article is posted here by permission of Dept. of Geosciences, University of Arizona for personal use, not for redistribution. The definitive version was published in Radiocarbon 46 (2004): 1029-1058.A new calibration curve for the conversion of radiocarbon ages to calibrated (cal) ages has been constructed and internationally ratified to replace IntCal98, which extended from 0–24 cal kyr BP (Before Present, 0 cal BP = AD 1950). The new calibration data set for terrestrial samples extends from 0–26 cal kyr BP, but with much higher resolution beyond 11.4 cal kyr BP than IntCal98. Dendrochronologically-dated tree-ring samples cover the period from 0–12.4 cal kyr BP. Beyond the end of the tree rings, data from marine records (corals and foraminifera) are converted to the atmospheric equivalent with a site-specific marine reservoir correction to provide terrestrial calibration from 12.4–26.0 cal kyr BP. A substantial enhancement relative to IntCal98 is the introduction of a coherent statistical approach based on a random walk model, which takes into account the uncertainty in both the calendar age and the 14C age to calculate the underlying calibration curve (Buck and Blackwell, this issue). The tree-ring data sets, sources of uncertainty, and regional offsets are discussed here. The marine data sets and calibration curve for marine samples from the surface mixed layer (Marine04) are discussed in brief, but details are presented in Hughen et al. (this issue a). We do not make a recommendation for calibration beyond 26 cal kyr BP at this time; however, potential calibration data sets are compared in another paper (van der Plicht et al., this issue)

    A population of gamma-ray emitting globular clusters seen with the Fermi Large Area Telescope

    Get PDF
    Globular clusters with their large populations of millisecond pulsars (MSPs) are believed to be potential emitters of high-energy gamma-ray emission. Our goal is to constrain the millisecond pulsar populations in globular clusters from analysis of gamma-ray observations. We use 546 days of continuous sky-survey observations obtained with the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope to study the gamma-ray emission towards 13 globular clusters. Steady point-like high-energy gamma-ray emission has been significantly detected towards 8 globular clusters. Five of them (47 Tucanae, Omega Cen, NGC 6388, Terzan 5, and M 28) show hard spectral power indices (0.7<Γ<1.4)(0.7 < \Gamma <1.4) and clear evidence for an exponential cut-off in the range 1.0-2.6 GeV, which is the characteristic signature of magnetospheric emission from MSPs. Three of them (M 62, NGC 6440 and NGC 6652) also show hard spectral indices (1.0<Γ<1.7)(1.0 < \Gamma < 1.7), however the presence of an exponential cut-off can not be unambiguously established. Three of them (Omega Cen, NGC 6388, NGC 6652) have no known radio or X-ray MSPs yet still exhibit MSP spectral properties. From the observed gamma-ray luminosities, we estimate the total number of MSPs that is expected to be present in these globular clusters. We show that our estimates of the MSP population correlate with the stellar encounter rate and we estimate 2600-4700 MSPs in Galactic globular clusters, commensurate with previous estimates. The observation of high-energy gamma-ray emission from a globular cluster thus provides a reliable independent method to assess their millisecond pulsar populations that can be used to make constraints on the original neutron star X-ray binary population, essential for understanding the importance of binary systems in slowing the inevitable core collapse of globular clusters.Comment: Accepted for publication in A&A. Corresponding authors: J. Kn\"odlseder, N. Webb, B. Pancraz

    Fermi Large Area Telescope Constraints on the Gamma-ray Opacity of the Universe

    Get PDF
    The Extragalactic Background Light (EBL) includes photons with wavelengths from ultraviolet to infrared, which are effective at attenuating gamma rays with energy above ~10 GeV during propagation from sources at cosmological distances. This results in a redshift- and energy-dependent attenuation of the gamma-ray flux of extragalactic sources such as blazars and Gamma-Ray Bursts (GRBs). The Large Area Telescope onboard Fermi detects a sample of gamma-ray blazars with redshift up to z~3, and GRBs with redshift up to z~4.3. Using photons above 10 GeV collected by Fermi over more than one year of observations for these sources, we investigate the effect of gamma-ray flux attenuation by the EBL. We place upper limits on the gamma-ray opacity of the Universe at various energies and redshifts, and compare this with predictions from well-known EBL models. We find that an EBL intensity in the optical-ultraviolet wavelengths as great as predicted by the "baseline" model of Stecker et al. (2006) can be ruled out with high confidence.Comment: 42 pages, 12 figures, accepted version (24 Aug.2010) for publication in ApJ; Contact authors: A. Bouvier, A. Chen, S. Raino, S. Razzaque, A. Reimer, L.C. Reye
    • 

    corecore