10 research outputs found

    Resource assignment in short life technology intensive (SLTI) new product development (NPD)

    Get PDF
    Enterprises managing multiple concurrent New Product Development (NPD) projects face significant challenges assigning staff to projects in order to achieve launch schedules that maximize financial returns. The challenge is increased with the class of Short Life Technology Intensive (SLTI) products characterized by technical complexity, short development cycles and short revenue life cycles. Technical complexity drives the need to assign staffing resources of various technical disciplines and skill levels. SLTI products are rapidly developed and launched into stationary market windows where the revenue life cycle is short and decreasing with any time-to-market delay. The SLTI-NPD project management decision is to assign staff of varying technical discipline and skill level to minimize the revenue loss due to product launch delays across multiple projects. This dissertation considers an NPD organization responsible for multiple concurrent SLTI projects each characterized by a set of tasks having technical discipline requirements, task duration estimates and logical precedence relationships. Each project has a known potential launch date and potential revenue life cycle. The organization has a group of technical professionals characterized by a range of skill levels in a known set of technical disciplines. The SLTI-NPD resource assignment problem is solved using a multi-step process referred to as the Resource Assignment and Multi-Project Scheduling (RAMPS) decision support tool. Robust scheduling techniques are integrated to develop schedules that consider variation in task and project duration estimates. A valuation function provides a time-value linkage between schedules and the product revenue life cycle for each product. Productivity metrics are developed as the basis for prioritizing projects for resources assignment. The RAMPS tool implements assignment and scheduling algorithms in two phases; (i) a constructive approach that employs priority rule heuristics to derive feasible assignments and schedules and (ii) an improvement heuristic that considers productivity gains that can be achieved by interchanging resources of differing skill levels and corresponding work rates. An experimental analysis is conducted using the RAMPS tool and simulated project and resource data sets. Results show significant productivity and efficiency gains that can be achieved through effective project and resource prioritization and by including consideration of skill level in the assignment of technical resources

    The Cockayne syndrome group A gene encodes a WD repeat protein that interacts with CSB protein and a subunit of RNA polymerase II TFIIH

    Get PDF
    The hereditary disease Cockayne syndrome (CS) is characterized by a complex clinical phenotype. CS cells are abnormally sensitive to ultraviolet radiation and are defective in the repair of transcriptionally active genes. The cloned CSB gene encodes a member of a protein family that includes the yeast Snf2 protein, a component of the transcriptional regulator Swi/Snf. We report the cloning of the CSA cDNA, which can encode a WD repeat protein. Mutations in the cDNA have been identified in CS-A cell lines. CSA protein interacts with CSB protein and with p44 protein, a subunit of the human RNA polymerase II transcription factor IIH. These observations suggest that the products of the CSA and CSB genes are involved in transcription

    A Primer on the Jurisdiction of the U.S. Courts of Appeals

    No full text

    Progression of Geographic Atrophy in Age-related Macular Degeneration

    No full text

    Subretinal Hyperreflective Material in the Comparison of Age-Related Macular Degeneration Treatments Trials

    No full text
    corecore