9 research outputs found

    Understanding of atmospheric aerosol particles with improved particle identification and quantification by single particle mass spectrometry

    Get PDF
    Single particle mass spectrometry (SPMS) is a useful, albeit not fully quantitative tool to determine chemical composition and mixing state of aerosol particles in the atmosphere. During a six-week field campaign in summer 2016 at a rural site in the upper Rhine valley near Karlsruhe city in southwest Germany, ~3.7 × 10⁵ single particles were analysed by a laser ablation aerosol particle time-of-flight mass spectrometer (LAAPTOF). Combining fuzzy classification, marker peaks, typical peak ratios, and laboratory-based reference spectra, seven major particle classes were identified. With the precise identification and well characterized overall detection efficiency (ODE) for this instrument, particle similarity can be transferred into corrected number fractions and further transferred into mass fractions. Considering the entire measurement period, “Potassium rich and aromatics coated dust” (class 5) dominated the particle number (46.5% number fraction) and mass (36.0% mass fraction); “Sodium salts like particles” (class 3) were the second lowest in number (3.5%), but the second dominating class in terms of particle mass (25.3%). This difference demonstrates the crucial role of particle mass quantification for SPMS data. Using corrections for maximum, mean, and minimum ODE, the total mass of the quantified particles measured by LAAPTOF accounts for ~12%, ~25%, and ~104% of the total mass measured by an aerosol mass spectrometer (AMS) with a collection efficiency of 0.5. These two mass spectrometers show a good correlation (correlation coefficient γ > 0.6) regarding total mass for more than 70% of the measurement time, indicating non-refractory species measured by AMS might originate from particles consisting of internally mixed non-refractory and refractory components. In addition, specific relationships of LAAPTOF ion intensities and AMS mass concentrations for non-refractory compounds were found for specific measurement periods. Furthermore, our approach allows for the first time to assign the nonrefractory compounds measured by AMS to different particle classes. Overall AMS-nitrate was mainly arising from class 3, while class 5 was dominant during events rich in organic aerosol particles

    Laser ablation aerosol particle time-of-flight mass spectrometer (LAAPTOF): performance, reference spectra and classification of atmospheric samples

    Get PDF
    The laser ablation aerosol particle time-of-flight mass spectrometer (LAAPTOF, AeroMegt GmbH) is able to identify the chemical composition and mixing state of individual aerosol particles, and thus is a tool for elucidating their impacts on human health, visibility, ecosystem, and climate. The overall detection efficiency (ODE) of the instrument we use was determined to range from  ∼ (0.01±0.01) to  ∼ (4.23±2.36)% for polystyrene latex (PSL) in the size range of 200 to 2000nm,  ∼ (0.44±0.19) to  ∼ (6.57±2.38)% for ammonium nitrate (NH4NO3), and  ∼ (0.14±0.02) to  ∼ (1.46±0.08)% for sodium chloride (NaCl) particles in the size range of 300 to 1000nm. Reference mass spectra of 32 different particle types relevant for atmospheric aerosol (e.g. pure compounds NH4NO3, K2SO4, NaCl, oxalic acid, pinic acid, and pinonic acid; internal mixtures of e.g. salts, secondary organic aerosol, and metallic core–organic shell particles; more complex particles such as soot and dust particles) were determined. Our results show that internally mixed aerosol particles can result in spectra with new clusters of ions, rather than simply a combination of the spectra from the single components. An exemplary 1-day ambient data set was analysed by both classical fuzzy clustering and a reference-spectra-based classification method. Resulting identified particle types were generally well correlated. We show how a combination of both methods can greatly improve the interpretation of single-particle data in field measurements

    Understanding atmospheric aerosol particles with improved particle identification and quantification by single-particle mass spectrometry

    Get PDF
    Single-particle mass spectrometry (SPMS) is a widely used tool to determine chemical composition and mixing state of aerosol particles in the atmosphere. During a 6-week field campaign in summer 2016 at a rural site in the upper Rhine valley, near the city of Karlsruhe in southwest Germany, ∼3.7×105^{5} single particles were analysed using a laser ablation aerosol particle time-of-flight mass spectrometer (LAAPTOF). Combining fuzzy classification, marker peaks, typical peak ratios, and laboratory-based reference spectra, seven major particle classes were identified. With the precise particle identification and well-characterized laboratory-derived overall detection efficiency (ODE) for this instrument, particle similarity can be transferred into corrected number and mass fractions without the need of a reference instrument in the field. Considering the entire measurement period, aged-biomass-burning and soil-dust-like particles dominated the particle number (45.0 % number fraction) and mass (31.8 % mass fraction); sodium-salt-like particles were the second lowest in number (3.4 %) but the second dominating class in terms of particle mass (30.1 %). This difference demonstrates the crucial role of particle number counts\u27 correction for mass quantification using SPMS data. Using corrections for size-resolved and chemically resolved ODE, the total mass of the particles measured by LAAPTOF accounts for 23 %–68 % of the total mass measured by an aerosol mass spectrometer (AMS) depending on the measurement periods. These two mass spectrometers show a good correlation (Pearson\u27s correlation coefficient γ>0.6) regarding total mass for more than 85 % of the measurement time, indicating non-refractory species measured by AMS may originate from particles consisting of internally mixed non-refractory and refractory components. In addition, specific relationships of LAAPTOF ion intensities and AMS mass concentrations for non-refractory compounds were found for specific measurement periods, especially for the fraction of org ∕ (org + nitrate). Furthermore, our approach allows the non-refractory compounds measured by AMS to be assigned to different particle classes. Overall AMS nitrate mainly arose from sodium-salt-like particles, while aged-biomass-burning particles were dominant during events with high organic aerosol particle concentrations

    Seasonal characteristics of organic aerosol chemical composition and volatility in Stuttgart, Germany

    Get PDF
    The chemical composition and volatility of organic aerosol (OA) particles were investigated during July–August 2017 and February–March 2018 in the city of Stuttgart, one of the most polluted cities in Germany. Total non-refractory particle mass was measured with a highresolution time-of-flight aerosol mass spectrometer (HRToF-AMS; hereafter AMS). Aerosol particles were collected on filters and analyzed in the laboratory with a filter inlet for gases and aerosols coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (FIGAERO-HR-ToFCIMS; hereafter CIMS), yielding the molecular composition of oxygenated OA (OOA) compounds. While the average organic mass loadings are lower in the summer period (5.1 ± 3.2 μgm¯³) than in the winter period (8.4 ±5.6 μgm¯³), we find relatively larger mass contributions of organics measured by AMS in summer (68.8 ±13.4 %) compared to winter (34.8 ±9.5 %). CIMS mass spectra show OOA compounds in summer have O: C of 0.82 ±0.02 and are more influenced by biogenic emissions, while OOA compounds in winter have O:C of 0.89 ±0.06 and are more influenced by biomass burning emissions. Volatility parametrization analysis shows that OOA in winter is less volatile with higher contributions of low-volatility organic compounds (LVOCs) and extremely low-volatility organic compounds (ELVOCs). We partially explain this by the higher contributions of compounds with shorter carbon chain lengths and a higher number of oxygen atoms, i.e., higher O:C in winter. Organic compounds desorbing from the particles deposited on the filter samples also exhibit a shift of signal to higher desorption temperatures (i.e., lower apparent volatility) in winter. This is consistent with the relatively higher O: C in winter but may also be related to higher particle viscosity due to the higher contributions of larger-molecular-weight LVOCs and ELVOCs, interactions between different species and/or particles (particle matrix), and/or thermal decomposition of larger molecules. The results suggest that whereas lower temperature in winter may lead to increased partitioning of semi-volatile organic compounds (SVOCs) into the particle phase, this does not result in a higher overall volatility of OOA in winter and that the difference in sources and/or chemistry between the seasons plays a more important role. Our study provides insights into the seasonal variation of the molecular composition and volatility of ambient OA particles and into their potential sources

    Variation in chemical composition and volatility of oxygenated organic aerosol in different rural, urban, and mountain environments

    Get PDF
    The apparent volatility of atmospheric organic aerosol (OA) particles is determined by their chemical composition and environmental conditions (e.g., ambient temperature). A quantitative, experimental assessment of volatility and the respective importance of these two factors remains challenging, especially in ambient measurements. We present molecular composition and volatility of oxygenated OA (OOA) particles in different rural, urban, and mountain environments (including Chacaltaya, Bolivia; Alabama, US; Hyytiälä, Finland; Stuttgart and Karlsruhe, Germany; and Delhi, India) based on deployments of a filter inlet for gases and aerosols coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (FIGAERO-CIMS). We find on average larger carbon numbers (nC) and lower oxygen-to-carbon (O : C) ratios at the urban sites (nC: 9.8 ± 0.7; O : C: 0.76 ± 0.03; average ±1 standard deviation) compared to the rural (nC: 8.8 ± 0.6; O : C: 0.80 ± 0.05) and mountain stations (nC: 8.1 ± 0.8; O : C: 0.91 ± 0.07), indicative of different emission sources and chemistry

    A new Time-Of-Flight Mass Spectrometer (TOF-MS) for noble gas analysis

    Get PDF
    Noble gas analysis in early solar system materials, which can provide valuable information about early solar system processes and timescales, are very challenging because of extremely low noble gas concentrations (ppt). We therefore developed a new compact sized (33 cm length, 7.2cm diameter, 1.3 L internal volume) Time-of-Flight (TOF) noble gas mass spectrometer for high sensitivity. We call it as Edel Gas Time-of-flight (EGT) mass spectrometer. The instrument uses electron impact ionization coupled to an ion trap, which allows us to ionize and measure all noble gas isotopes. Using a reflectron set-up improves the mass resolution. In addition, the reflectron set-up also enables some extra focusing. The detection is via MCPs and the signals are processed either via ADC or TDC systems. The objective of this work is to understand the newly developed Time-Of-Flight (TOF) mass spectrometer for noble gas analysis in presolar grains of the meteorites. Chapter 1 briefly introduces the basic idea and importance of the instrument. The physics relevant to time-of-flight mass spectrometry technique is discussed in the Chapter 2 and Chapter 3 will present the oxidation technique of nanodiamonds of the presolar grains by using copper oxide. Chapter 4 will present the details about EGT data analysis software. Chapter 5 and Chapter 6 will explain the details about EGT design and operation. Finally, the performance results will be presented and discussed in the Chapter 7, and whole work is summarized in Chapter 8 and also outlook of the future work is given
    corecore