2,231 research outputs found
Influence of temperature on prevalence of health and welfare conditions in pigs: time-series analysis of pig abattoir inspection data in England and Wales
The prevalence of many diseases in pigs displays seasonal distributions. Despite growing concerns about the impacts of climate change, we do not yet have a good understanding of the role that weather factors play in explaining such seasonal patterns. In this study, national and county-level aggregated abattoir inspection data were assessed for England and Wales during 2010–2015. Seasonally-adjusted relationships were characterised between weekly ambient maximum temperature and the prevalence of both respiratory conditions and tail biting detected at slaughter. The prevalence of respiratory conditions showed cyclical annual patterns with peaks in the summer months and troughs in the winter months each year. However, there were no obvious associations with either high or low temperatures. The prevalence of tail biting generally increased as temperatures decreased, but associations were not supported by statistical evidence: across all counties there was a relative risk of 1.028 (95% CI 0.776–1.363) for every 1 °C fall in temperature. Whilst the seasonal patterns observed in this study are similar to those reported in previous studies, the lack of statistical evidence for an explicit association with ambient temperature may possibly be explained by the lack of information on date of disease onset. There is also the possibility that other time-varying factors not investigated here may be driving some of the seasonal patterns
A Formalism for the Systematic Treatment of Rapidity Logarithms in Quantum Field Theory
Many observables in QCD rely upon the resummation of perturbation theory to
retain predictive power. Resummation follows after one factorizes the cross
section into the rele- vant modes. The class of observables which are sensitive
to soft recoil effects are particularly challenging to factorize and resum
since they involve rapidity logarithms. In this paper we will present a
formalism which allows one to factorize and resum the perturbative series for
such observables in a systematic fashion through the notion of a "rapidity
renormalization group". That is, a Collin-Soper like equation is realized as a
renormalization group equation, but has a more universal applicability to
observables beyond the traditional transverse momentum dependent parton
distribution functions (TMDPDFs) and the Sudakov form factor. This formalism
has the feature that it allows one to track the (non-standard) scheme
dependence which is inherent in any scenario where one performs a resummation
of rapidity divergences. We present a pedagogical introduction to the formalism
by applying it to the well-known massive Sudakov form factor. The formalism is
then used to study observables of current interest. A factorization theorem for
the transverse momentum distribution of Higgs production is presented along
with the result for the resummed cross section at NLL. Our formalism allows one
to define gauge invariant TMDPDFs which are independent of both the hard
scattering amplitude and the soft function, i.e. they are uni- versal. We
present details of the factorization and resummation of the jet broadening
cross section including a renormalization in pT space. We furthermore show how
to regulate and renormalize exclusive processes which are plagued by endpoint
singularities in such a way as to allow for a consistent resummation.Comment: Typos in Appendix C corrected, as well as a typo in eq. 5.6
An effective theory for jet propagation in dense QCD matter: jet broadening and medium-induced bremsstrahlung
Two effects, jet broadening and gluon bremsstrahlung induced by the
propagation of a highly energetic quark in dense QCD matter, are reconsidered
from effective theory point of view. We modify the standard Soft Collinear
Effective Theory (SCET) Lagrangian to include Glauber modes, which are needed
to implement the interactions between the medium and the collinear fields. We
derive the Feynman rules for this Lagrangian and show that it is invariant
under soft and collinear gauge transformations. We find that the newly
constructed theory SCET recovers exactly the general result for the
transverse momentum broadening of jets. In the limit where the radiated gluons
are significantly less energetic than the parent quark, we obtain a jet
energy-loss kernel identical to the one discussed in the reaction operator
approach to parton propagation in matter. In the framework of SCET we
present results for the fully-differential bremsstrahlung spectrum for both the
incoherent and the Landau-Pomeranchunk-Migdal suppressed regimes beyond the
soft-gluon approximation. Gauge invariance of the physics results is
demonstrated explicitly by performing the calculations in both the light-cone
and covariant gauges. We also show how the process-dependent
medium-induced radiative corrections factorize from the jet production cross
section on the example of the quark jets considered here.Comment: 52 pages, 15 pdf figures, as published in JHE
Resummation of transverse energy in vector boson and Higgs boson production at hadron colliders
We compute the resummed hadronic transverse energy (E_T) distribution due to
initial-state QCD radiation in vector boson and Higgs boson production at
hadron colliders. The resummed exponent, parton distributions and coefficient
functions are treated consistently to next-to-leading order. The results are
matched to fixed-order calculations at large E_T and compared with
parton-shower Monte Carlo predictions at Tevatron and LHC energies.Comment: 24 pages, 15 figure
Heavy quark flavour dependence of multiparticle production in QCD jets
After inserting the heavy quark mass dependence into QCD partonic evolution
equations, we determine the mean charged hadron multiplicity and second
multiplicity correlators of jets produced in high energy collisions. We thereby
extend the so-called dead cone effect to the phenomenology of multiparticle
production in QCD jets and find that the average multiplicity of heavy-quark
initiated jets decreases significantly as compared to the massless case, even
taking into account the weak decay products of the leading primary quark. We
emphasize the relevance of our study as a complementary check of -tagging
techniques at hadron colliders like the Tevatron and the LHC.Comment: Version revised, accepted for publication in JHEP, 21 pages and 7
figure
A Vast Thin Plane of Co-rotating Dwarf Galaxies Orbiting the Andromeda Galaxy
Dwarf satellite galaxies are thought to be the remnants of the population of
primordial structures that coalesced to form giant galaxies like the Milky Way.
An early analysis noted that dwarf galaxies may not be isotropically
distributed around our Galaxy, as several are correlated with streams of HI
emission, and possibly form co-planar groups. These suspicions are supported by
recent analyses, and it has been claimed that the apparently planar
distribution of satellites is not predicted within standard cosmology, and
cannot simply represent a memory of past coherent accretion. However, other
studies dispute this conclusion. Here we report the existence (99.998%
significance) of a planar sub-group of satellites in the Andromeda galaxy,
comprising approximately 50% of the population. The structure is vast: at least
400 kpc in diameter, but also extremely thin, with a perpendicular scatter
<14.1 kpc (99% confidence). Radial velocity measurements reveal that the
satellites in this structure have the same sense of rotation about their host.
This finding shows conclusively that substantial numbers of dwarf satellite
galaxies share the same dynamical orbital properties and direction of angular
momentum, a new insight for our understanding of the origin of these most dark
matter dominated of galaxies. Intriguingly, the plane we identify is
approximately aligned with the pole of the Milky Way's disk and is co-planar
with the Milky Way to Andromeda position vector. The existence of such
extensive coherent kinematic structures within the halos of massive galaxies is
a fact that must be explained within the framework of galaxy formation and
cosmology.Comment: Published in the 3rd Jan 2013 issue of Nature. 19 pages, 4 figures, 1
three-dimensional interactive figure. To view and manipulate the 3-D figure,
an Adobe Reader browser plug-in is required; alternatively save to disk and
view with Adobe Reade
Diagnosis and assessment of dilated cardiomyopathy: a guideline protocol from the British Society of Echocardiography.
Heart failure (HF) is a debilitating and life-threatening condition, with 5-year survival rate lower than breast or prostate cancer. It is the leading cause of hospital admission in over 65s, and these admissions are projected to rise by more than 50% over the next 25 years. Transthoracic echocardiography (TTE) is the first-line step in diagnosis in acute and chronic HF and provides immediate information on chamber volumes, ventricular systolic and diastolic function, wall thickness, valve function and the presence of pericardial effusion, while contributing to information on aetiology. Dilated cardiomyopathy (DCM) is the third most common cause of HF and is the most common cardiomyopathy. It is defined by the presence of left ventricular dilatation and left ventricular systolic dysfunction in the absence of abnormal loading conditions (hypertension and valve disease) or coronary artery disease sufficient to cause global systolic impairment. This document provides a practical approach to diagnosis and assessment of dilated cardiomyopathy that is aimed at the practising sonographer
Acetyl-CoA-mediated activation of Mycobacterium tuberculosis isocitrate lyase 2
Isocitrate lyase is important for lipid utilisation by Mycobacterium tuberculosis but its ICL2 isoform is poorly understood. Here we report that binding of the lipid metabolites acetyl-CoA or propionyl-CoA to ICL2 induces a striking structural rearrangement, substantially increasing isocitrate lyase and methylisocitrate lyase activities. Thus, ICL2 plays a pivotal role regulating carbon flux between the tricarboxylic acid (TCA) cycle, glyoxylate shunt and methylcitrate cycle at high lipid concentrations, a mechanism essential for bacterial growth and virulence
Gluon Spin, Canonical Momentum, and Gauge Symmetry
It is well known that in gauge theories, the spin (and orbital angular
momentum) of gauge particles is not gauge invariant, although the helicity is;
neither are the canonical momentum and canonical angular momentum of charged
particles. However, the simple appeal of these concepts has motivated repeated
attempts to resurrect them as physical descriptions of gauge systems. In
particular, measurability of the gluon-spin-contribution to the proton helicity
in polarized proton scattering has generated many theoretical efforts in
generalizing it and others as gauge-invariant quantities. In this work, we
analyze the constraints of gauge symmetry, the significance of gluon spin in
the light-cone gauge, and what is possible and natural in QCD parton physics,
emphasizing experimental observability and physical interpretation in the
structure of bound states. We also comment on the measurability of the orbital
angular momentum of the Laguerre-Gaussian laser modes in optics.Comment: 17 pages, latex, 1 figur
- …