430 research outputs found
Equation of state and initial temperature of quark gluon plasma at RHIC
In gold-gold collisions of the Relativistic Heavy Ion Collider (RHIC) a
perfect fluid of quarks, sometimes called the strongly interacting quark gluon
plasma (sQGP) is created for an extremely short time. The time evolution of
this fluid can be described by hydrodynamical models. After expansion and
cooling, the freeze-out happens and hadrons are created. Their distribution
reveals information about the final state of the fluid. To investigate the time
evolution one needs to analyze penetrating probes, such as direct photon
observables. Transverse momentum distributions of low energy direct photons
were mesured in 2010 by PHENIX, while azimuthal asymmetry in 2011. These
measurements can be compared to hydrodynamics to determine the equation of
state and the initial temperature of sQGP. In this paper we analyze an 1+3
dimensional solution of relativistic hydrodynamics. We calculate momentum
distribution, azimuthal asymmetry and momentum correlations of direct photons.
Based on earlier fits to hadronic spectra, we compare photon calculations to
measurements to determine the equation of state and the initial temperature of
sQGP. We find that the initial temperature in the center of the fireball is
507+-12 MeV, while for the sound speed we get a speed of sound of 0.36+-0.02.
We also estimate a systematic error of these results. We find that the measured
azimuthal asymmetry is also not incompatible with this model, and predict a
photon source that is significantly larger in the out direction than in the
side direction.Comment: 12 pages, 4 figures. This work was supported by the OTKA grant
NK-73143 and NK-101438 and M. Csanad's Bolyai scholarshi
Epilepsy mortality in Wales during COVID-19
Purpose: The COVID-19 pandemic has increased mortality worldwide and those with chronic conditions may have been disproportionally affected. However, it is unknown whether the pandemic has changed mortality rates for people with epilepsy. We aimed to compare mortality rates in people with epilepsy in Wales during the pandemic with pre-pandemic rates. Methods: We performed a retrospective study using individual-level linked population-scale anonymised electronic health records. We identified deaths in people with epilepsy (DPWE), i.e. those with a diagnosis of epilepsy, and deaths associated with epilepsy (DAE), where epilepsy was recorded as a cause of death on death certificates. We compared death rates in 2020 with average rates in 2015–2019 using Poisson models to calculate death rate ratios. Results: There were 188 DAE and 628 DPWE in Wales in 2020 (death rates: 7.7/100,000/year and 25.7/100,000/year). The average rates for DAE and DPWE from 2015 to 2019 were 5.8/100,000/year and 23.8/100,000/year, respectively. Death rate ratios (2020 compared to 2015–2019) for DAE were 1.34 (95%CI 1.14–1.57, p<0.001) and for DPWE were 1.08 (0.99–1.17, p = 0.09). The death rate ratios for non-COVID deaths (deaths without COVID mentioned on death certificates) for DAE were 1.17 (0.99–1.39, p = 0.06) and for DPWE were 0.96 (0.87–1.05, p = 0.37). Conclusions: The significant increase in DAE in Wales during 2020 could be explained by the direct effect of COVID-19 infection. Non-COVID-19 deaths have not increased significantly but further work is needed to assess the longer-term impact
Shear viscosity of the Quark-Gluon Plasma from a virial expansion
We calculate the shear viscosity in the quark-gluon plasma (QGP) phase
within a virial expansion approach with particular interest in the ratio of
to the entropy density , i.e. . The virial expansion approach
allows us to include the interactions between the partons in the deconfined
phase and to evaluate the corrections to a single-particle partition function.
In the latter approach we start with an effective interaction with parameters
fixed to reproduce thermodynamical quantities of QCD such as energy and/or
entropy density. We also directly extract the effective coupling \ga_{\rm V}
for the determination of . Our numerical results give a ratio
at the critical temperature , which is very
close to the theoretical bound of . Furthermore, for temperatures
the ratio is in the range of the present
experimental estimates at RHIC. When combining our results for
in the deconfined phase with those from chiral perturbation theory or
the resonance gas model in the confined phase we observe a pronounced minimum
of close to the critical temperature .Comment: Published in Eur. Phys. J. C, 7 pages, 2 figures, 3 tabl
The UDF05 follow-up of the Hubble Ultra Deep Field. I. The faint-end slope of the Lyman Break Galaxy Population at z ~ 5
We present the UDF05 HST program, which consists of three disjoint fields—NICP12, NICP34, plus the HUDF—with deep ACS (F606W, F775W, and F850LP) and NICMOS (F110W and F160W) imaging. Here we use the ACS data for the NICP12 and HUDF fields to implement a (V − i) − (i − z) selection criterion that allows us to identify a sample of 101 (133) z ~ 5 Lyman break galaxies (LBGs) down to z850 = 28.5 (29.25) mag in NICP12 (HUDF). We construct the rest-frame 1400 Å LBG luminosity function (LF) over the range M1400 = [ − 21.4, − 17.1] , i.e. down to ~0.04L* at z ~ 5, and use Subaru Deep Field results (Yoshida et al. 2006) to constrain our LF at the bright end (M1400 ≥ − 22.2). We show that (1) different assumptions regarding the LBG SED distribution, dust properties, and intergalactic absorption result in a 25% variation in the number density of LBGs at z ~ 5; (2) under consistent assumptions for dust properties and intergalactic absorption, the HUDF is ~30% underdense in z ~ 5 LBGs relative to the NICP12 field, a variation which is well explained by cosmic variance; and (3) the faint-end slope of the LF does not depend on the input parameters, and has a value of α ~ − 1.6, similar to the faint-end slope of the LF of z ~ 3 and z ~ 6 LBGs. Our study therefore supports no variation in the faint end of the LBG LF over the whole redshift range z ~ 3 to z ~ 6. Based on a comparison with semianalytical models, we speculate that the z ~ 5 LBGs might have a top-heavy IMF
Partonic effects on the elliptic flow at relativistic heavy ion collisions
The elliptic flow in heavy ion collisions at RHIC is studied in a multiphase
transport model. By converting the strings in the high energy density regions
into partons, we find that the final elliptic flow is sensitive to the parton
scattering cross section. To reproduce the large elliptic flow observed in
Au+Au collisions at GeV requires a parton scattering cross
section of about 6 mb. We also study the dependence of the elliptic flow on the
particle multiplicity, transverse momentum, and particle mass.Comment: 7 pages, 7 figures, revtex, text added to detail the procedure for
conversions between hadrons and parton
Effects of momentum conservation on the analysis of anisotropic flow
We present a general method for taking into account correlations due to
momentum conservation in the analysis of anisotropic flow, either by using the
two-particle correlation method or the standard flow vector method. In the
latter, the correlation between the particle and the flow vector is either
corrected through a redefinition (shift) of the flow vector, or subtracted
explicitly from the observed flow coefficient. In addition, momentum
conservation contributes to the reaction plane resolution. Momentum
conservation mostly affects the first harmonic in azimuthal distributions,
i.e., directed flow. It also modifies higher harmonics, for instance elliptic
flow, when they are measured with respect to a first harmonic event plane such
as one determined with the standard transverse momentum method. Our method is
illustrated by application to NA49 data on pion directed flow.Comment: RevTeX 4, 10 pages, 1 eps figure. Version accepted for publication in
Phys Rev
Shear Viscosity of a Hot Pion Gas
The shear viscosity of an interacting pion gas is studied using the Kubo
formalism as a microscopic description of thermal systems close to global
equilibrium. We implement the skeleton expansion in order to approximate the
retarded correlator of the viscous part of the energy-momentum tensor. After
exploring this in theory we show how the skeleton expansion can be
consistently applied to pions in chiral perturbation theory. The shear
viscosity is determined by the spectral width, or equivalently, the mean
free path of pions in the heat bath. We derive a new analytical result for the
mean free path which is well-conditioned for numerical evaluation and discuss
the temperature and pion-mass dependence of the mean free path and the shear
viscosity. The ratio of the interacting pion gas exceeds the lower
bound from AdS/CFT correspondence.Comment: 12 pages, 7 figures. Revision includes additional Appendix B. Matches
published versio
Quasi-particle model for lattice QCD: quark-gluon plasma in heavy ion collisions
We propose a quasi-particle model to describe the lattice QCD equation of
state for pure SU(3) gauge theory in its deconfined state, for .
The method involves mapping the interaction part of the equation of state to an
effective fugacity of otherwise non-interacting quasi-gluons. We find that this
mapping is exact. Using the quasi-gluon distribution function, we determine the
energy density and the modified dispersion relation for the single particle
energy, in which the trace anomaly is manifest. As an application, we first
determine the Debye mass, and then the important transport parameters, {\it
viz}, the shear viscosity, and the shear viscosity to entropy density
ratio, . We find that both and
are sensitive to the interactions, and that the interactions significantly
lower both and .Comment: 10 pages, 8 figures, epj class file, version accepted for publication
in Euro. Phys.J
Optical Spectra of SNR Candidates in NGC 300
We present moderate-resolution (<5A) long-slit optical spectra of 51 nebular
objects in the nearby Sculptor Group galaxy NGC 300 obtained with the 2.3 meter
Advanced Technology Telescope at Siding Spring Observatory, Australia. Adopting
the criterion of [SII]/Ha>=0.4 to confirm supernova remnants (SNRs) from
optical spectra, we find that of 28 objects previously proposed as SNRs from
optical observations, 22 meet this criterion with six showing [SII]/Ha of less
than 0.4. Of 27 objects suggested as SNRs from radio data, four are associated
with the 28 previously proposed SNRs. Of these four, three (included in the 22
above) meet the criterion. In all, 22 of the 51 nebular objects meet the
[SII]/Ha criterion as SNRs while the nature of the remaining 29 objects remains
undetermined by these observations.Comment: Accepted for publication in Astrophysics & Space Scienc
State sampling dependence of the Hopfield network inference
The fully connected Hopfield network is inferred based on observed
magnetizations and pairwise correlations. We present the system in the glassy
phase with low temperature and high memory load. We find that the inference
error is very sensitive to the form of state sampling. When a single state is
sampled to compute magnetizations and correlations, the inference error is
almost indistinguishable irrespective of the sampled state. However, the error
can be greatly reduced if the data is collected with state transitions. Our
result holds for different disorder samples and accounts for the previously
observed large fluctuations of inference error at low temperatures.Comment: 4 pages, 1 figure, further discussions added and relevant references
adde
- …