430 research outputs found

    Equation of state and initial temperature of quark gluon plasma at RHIC

    Get PDF
    In gold-gold collisions of the Relativistic Heavy Ion Collider (RHIC) a perfect fluid of quarks, sometimes called the strongly interacting quark gluon plasma (sQGP) is created for an extremely short time. The time evolution of this fluid can be described by hydrodynamical models. After expansion and cooling, the freeze-out happens and hadrons are created. Their distribution reveals information about the final state of the fluid. To investigate the time evolution one needs to analyze penetrating probes, such as direct photon observables. Transverse momentum distributions of low energy direct photons were mesured in 2010 by PHENIX, while azimuthal asymmetry in 2011. These measurements can be compared to hydrodynamics to determine the equation of state and the initial temperature of sQGP. In this paper we analyze an 1+3 dimensional solution of relativistic hydrodynamics. We calculate momentum distribution, azimuthal asymmetry and momentum correlations of direct photons. Based on earlier fits to hadronic spectra, we compare photon calculations to measurements to determine the equation of state and the initial temperature of sQGP. We find that the initial temperature in the center of the fireball is 507+-12 MeV, while for the sound speed we get a speed of sound of 0.36+-0.02. We also estimate a systematic error of these results. We find that the measured azimuthal asymmetry is also not incompatible with this model, and predict a photon source that is significantly larger in the out direction than in the side direction.Comment: 12 pages, 4 figures. This work was supported by the OTKA grant NK-73143 and NK-101438 and M. Csanad's Bolyai scholarshi

    Epilepsy mortality in Wales during COVID-19

    Get PDF
    Purpose: The COVID-19 pandemic has increased mortality worldwide and those with chronic conditions may have been disproportionally affected. However, it is unknown whether the pandemic has changed mortality rates for people with epilepsy. We aimed to compare mortality rates in people with epilepsy in Wales during the pandemic with pre-pandemic rates. Methods: We performed a retrospective study using individual-level linked population-scale anonymised electronic health records. We identified deaths in people with epilepsy (DPWE), i.e. those with a diagnosis of epilepsy, and deaths associated with epilepsy (DAE), where epilepsy was recorded as a cause of death on death certificates. We compared death rates in 2020 with average rates in 2015–2019 using Poisson models to calculate death rate ratios. Results: There were 188 DAE and 628 DPWE in Wales in 2020 (death rates: 7.7/100,000/year and 25.7/100,000/year). The average rates for DAE and DPWE from 2015 to 2019 were 5.8/100,000/year and 23.8/100,000/year, respectively. Death rate ratios (2020 compared to 2015–2019) for DAE were 1.34 (95%CI 1.14–1.57, p<0.001) and for DPWE were 1.08 (0.99–1.17, p = 0.09). The death rate ratios for non-COVID deaths (deaths without COVID mentioned on death certificates) for DAE were 1.17 (0.99–1.39, p = 0.06) and for DPWE were 0.96 (0.87–1.05, p = 0.37). Conclusions: The significant increase in DAE in Wales during 2020 could be explained by the direct effect of COVID-19 infection. Non-COVID-19 deaths have not increased significantly but further work is needed to assess the longer-term impact

    Shear viscosity of the Quark-Gluon Plasma from a virial expansion

    Full text link
    We calculate the shear viscosity η\eta in the quark-gluon plasma (QGP) phase within a virial expansion approach with particular interest in the ratio of η\eta to the entropy density ss, i.e. η/s\eta/s. The virial expansion approach allows us to include the interactions between the partons in the deconfined phase and to evaluate the corrections to a single-particle partition function. In the latter approach we start with an effective interaction with parameters fixed to reproduce thermodynamical quantities of QCD such as energy and/or entropy density. We also directly extract the effective coupling \ga_{\rm V} for the determination of η\eta. Our numerical results give a ratio η/s0.097\eta/s\approx 0.097 at the critical temperature TcT_{\rm c}, which is very close to the theoretical bound of 1/(4π)1/(4\pi). Furthermore, for temperatures T1.8TcT\leq 1.8 T_{\rm c} the ratio η/s\eta/s is in the range of the present experimental estimates 0.10.30.1-0.3 at RHIC. When combining our results for η/s\eta/s in the deconfined phase with those from chiral perturbation theory or the resonance gas model in the confined phase we observe a pronounced minimum of η/s\eta/s close to the critical temperature TcT_{\rm c}.Comment: Published in Eur. Phys. J. C, 7 pages, 2 figures, 3 tabl

    The UDF05 follow-up of the Hubble Ultra Deep Field. I. The faint-end slope of the Lyman Break Galaxy Population at z ~ 5

    Get PDF
    We present the UDF05 HST program, which consists of three disjoint fields—NICP12, NICP34, plus the HUDF—with deep ACS (F606W, F775W, and F850LP) and NICMOS (F110W and F160W) imaging. Here we use the ACS data for the NICP12 and HUDF fields to implement a (V − i) − (i − z) selection criterion that allows us to identify a sample of 101 (133) z ~ 5 Lyman break galaxies (LBGs) down to z850 = 28.5 (29.25) mag in NICP12 (HUDF). We construct the rest-frame 1400 Å LBG luminosity function (LF) over the range M1400 = [ − 21.4, − 17.1] , i.e. down to ~0.04L* at z ~ 5, and use Subaru Deep Field results (Yoshida et al. 2006) to constrain our LF at the bright end (M1400 ≥ − 22.2). We show that (1) different assumptions regarding the LBG SED distribution, dust properties, and intergalactic absorption result in a 25% variation in the number density of LBGs at z ~ 5; (2) under consistent assumptions for dust properties and intergalactic absorption, the HUDF is ~30% underdense in z ~ 5 LBGs relative to the NICP12 field, a variation which is well explained by cosmic variance; and (3) the faint-end slope of the LF does not depend on the input parameters, and has a value of α ~ − 1.6, similar to the faint-end slope of the LF of z ~ 3 and z ~ 6 LBGs. Our study therefore supports no variation in the faint end of the LBG LF over the whole redshift range z ~ 3 to z ~ 6. Based on a comparison with semianalytical models, we speculate that the z ~ 5 LBGs might have a top-heavy IMF

    Partonic effects on the elliptic flow at relativistic heavy ion collisions

    Get PDF
    The elliptic flow in heavy ion collisions at RHIC is studied in a multiphase transport model. By converting the strings in the high energy density regions into partons, we find that the final elliptic flow is sensitive to the parton scattering cross section. To reproduce the large elliptic flow observed in Au+Au collisions at s=130A\sqrt s=130A GeV requires a parton scattering cross section of about 6 mb. We also study the dependence of the elliptic flow on the particle multiplicity, transverse momentum, and particle mass.Comment: 7 pages, 7 figures, revtex, text added to detail the procedure for conversions between hadrons and parton

    Effects of momentum conservation on the analysis of anisotropic flow

    Full text link
    We present a general method for taking into account correlations due to momentum conservation in the analysis of anisotropic flow, either by using the two-particle correlation method or the standard flow vector method. In the latter, the correlation between the particle and the flow vector is either corrected through a redefinition (shift) of the flow vector, or subtracted explicitly from the observed flow coefficient. In addition, momentum conservation contributes to the reaction plane resolution. Momentum conservation mostly affects the first harmonic in azimuthal distributions, i.e., directed flow. It also modifies higher harmonics, for instance elliptic flow, when they are measured with respect to a first harmonic event plane such as one determined with the standard transverse momentum method. Our method is illustrated by application to NA49 data on pion directed flow.Comment: RevTeX 4, 10 pages, 1 eps figure. Version accepted for publication in Phys Rev

    Shear Viscosity of a Hot Pion Gas

    Full text link
    The shear viscosity of an interacting pion gas is studied using the Kubo formalism as a microscopic description of thermal systems close to global equilibrium. We implement the skeleton expansion in order to approximate the retarded correlator of the viscous part of the energy-momentum tensor. After exploring this in gϕ4g\phi^4 theory we show how the skeleton expansion can be consistently applied to pions in chiral perturbation theory. The shear viscosity η\eta is determined by the spectral width, or equivalently, the mean free path of pions in the heat bath. We derive a new analytical result for the mean free path which is well-conditioned for numerical evaluation and discuss the temperature and pion-mass dependence of the mean free path and the shear viscosity. The ratio η/s\eta/s of the interacting pion gas exceeds the lower bound 1/4π1/4\pi from AdS/CFT correspondence.Comment: 12 pages, 7 figures. Revision includes additional Appendix B. Matches published versio

    Quasi-particle model for lattice QCD: quark-gluon plasma in heavy ion collisions

    Full text link
    We propose a quasi-particle model to describe the lattice QCD equation of state for pure SU(3) gauge theory in its deconfined state, for T1.5TcT \ge 1.5T_c. The method involves mapping the interaction part of the equation of state to an effective fugacity of otherwise non-interacting quasi-gluons. We find that this mapping is exact. Using the quasi-gluon distribution function, we determine the energy density and the modified dispersion relation for the single particle energy, in which the trace anomaly is manifest. As an application, we first determine the Debye mass, and then the important transport parameters, {\it viz}, the shear viscosity, η\eta and the shear viscosity to entropy density ratio, η/S\eta/{\mathcal S}. We find that both η\eta and η/S\eta/{\mathcal S} are sensitive to the interactions, and that the interactions significantly lower both η\eta and η/S\eta/\mathcal S.Comment: 10 pages, 8 figures, epj class file, version accepted for publication in Euro. Phys.J

    Optical Spectra of SNR Candidates in NGC 300

    Full text link
    We present moderate-resolution (<5A) long-slit optical spectra of 51 nebular objects in the nearby Sculptor Group galaxy NGC 300 obtained with the 2.3 meter Advanced Technology Telescope at Siding Spring Observatory, Australia. Adopting the criterion of [SII]/Ha>=0.4 to confirm supernova remnants (SNRs) from optical spectra, we find that of 28 objects previously proposed as SNRs from optical observations, 22 meet this criterion with six showing [SII]/Ha of less than 0.4. Of 27 objects suggested as SNRs from radio data, four are associated with the 28 previously proposed SNRs. Of these four, three (included in the 22 above) meet the criterion. In all, 22 of the 51 nebular objects meet the [SII]/Ha criterion as SNRs while the nature of the remaining 29 objects remains undetermined by these observations.Comment: Accepted for publication in Astrophysics & Space Scienc

    State sampling dependence of the Hopfield network inference

    Get PDF
    The fully connected Hopfield network is inferred based on observed magnetizations and pairwise correlations. We present the system in the glassy phase with low temperature and high memory load. We find that the inference error is very sensitive to the form of state sampling. When a single state is sampled to compute magnetizations and correlations, the inference error is almost indistinguishable irrespective of the sampled state. However, the error can be greatly reduced if the data is collected with state transitions. Our result holds for different disorder samples and accounts for the previously observed large fluctuations of inference error at low temperatures.Comment: 4 pages, 1 figure, further discussions added and relevant references adde
    corecore