5,230 research outputs found

    GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2

    Get PDF
    We describe the observation of GW170104, a gravitational-wave signal produced by the coalescence of a pair of stellar-mass black holes. The signal was measured on January 4, 2017 at 10 11:58.6 UTC by the twin advanced detectors of the Laser Interferometer Gravitational-Wave Observatory during their second observing run, with a network signal-to-noise ratio of 13 and a false alarm rate less than 1 in 70 000 years. The inferred component black hole masses are 31.2-6.0+8.4M\u27 and 19.4-5.9+5.3M (at the 90% credible level). The black hole spins are best constrained through measurement of the effective inspiral spin parameter, a mass-weighted combination of the spin components perpendicular to the orbital plane, χeff=-0.12-0.30+0.21. This result implies that spin configurations with both component spins positively aligned with the orbital angular momentum are disfavored. The source luminosity distance is 880-390+450 Mpc corresponding to a redshift of z=0.18-0.07+0.08. We constrain the magnitude of modifications to the gravitational-wave dispersion relation and perform null tests of general relativity. Assuming that gravitons are dispersed in vacuum like massive particles, we bound the graviton mass to mg≤7.7×10-23 eV/c2. In all cases, we find that GW170104 is consistent with general relativity

    Role of heme oxygenase-1 (HSP32) and HSP90 in glioblastoma

    Get PDF
    Glioblastoma (GBM) is the most common and malignant primary brain tumor in adults. The current treatment regimes for glioblastoma demonstrated a low efficiency and offer a poor prognosis. Advancements in conventional treatment strategies have only yielded modest improvements in overall survival. The heat shockproteins, heme oxygenase-1 (HO-1) and Hsp90, serve these pivotal roles in tumor cells and have been identified as effective targets for developing therapeutics. This topic review summarizes the current preclinical and clinical evidences and rationale to define the potential of HO-1 and Hsp90 in GBM progression and chemoresistance

    Neutron star radius-To-mass ratio from partial accretion disk occultation as measured through fe kα line profiles

    Get PDF
    We present a new method to measure the radius-To-mass ratio (R/M) of weakly magnetic, disk-Accreting neutron stars by exploiting the occultation of parts of the inner disk by the star itself. This occultation imprints characteristic features on the X-ray line profile that are unique and are expected to be present in low-mass X-ray binary systems seen under inclinations higher than ∼65°. We analyze a Nuclear Spectroscopic Telescope Array observation of a good candidate system, 4U 1636-53, and find that X-ray spectra from current instrumentation are unlikely to single out the occultation features owing to insufficient signal-To-noise. Based on an extensive set of simulations we show that large-Area X-ray detectors of the future generation could measure R/M to ∼2 ÷ 3% precision over a range of inclinations. Such is the precision in radius determination required to derive tight constraints on the equation of state of ultradense matter and it represents the goal that other methods also aim to achieve in the future

    Stochastic Cellular Automata Model for Stock Market Dynamics

    Get PDF
    In the present work we introduce a stochastic cellular automata model in order to simulate the dynamics of the stock market. A direct percolation method is used to create a hierarchy of clusters of active traders on a two dimensional grid. Active traders are characterised by the decision to buy, (+1), or sell, (-1), a stock at a certain discrete time step. The remaining cells are inactive,(0). The trading dynamics is then determined by the stochastic interaction between traders belonging to the same cluster. Most of the stylized aspects of the financial market time series are reproduced by the model.Comment: 17 pages and 7 figure

    The VSiPMT project

    Get PDF
    Photon detection is a key factor to study many physical processes in several areas of fundamental physics research. Focusing the attention on photodetectors for particle astrophysics, the future experiments aimed at the study of very high-energy or extremely rare phenomena (e.g. dark matter, proton decay, neutrinos from astrophysical sources) will require additional improvements in linearity, gain, quantum efficiency and single photon counting capability. To meet the requirements of this class of experiments, we propose a new design for a modern hybrid photodetector: the VSiPMT (Vacuum Silicon PhotoMultiplier Tube). The idea is to replace the classical dynode chain of a PMT with a SiPM, which therefore acts as an electron detector and amplifier. The aim is to match the large sensitive area of a photocathode with the performances of the SiPM technology. We now present the preliminary study we are performing to realize a 3-inches VSiPMT prototype

    Upper limits on bolometric luminosities of ten type Ia supernova progenitors from Chandra observations

    Get PDF
    We present an analysis of Chandra observations of the position of ten nearby (< 25 Mpc) type Ia supernovae, taken before the explosions. No sources corresponding to progenitors were found in any of the observations. We calculated upper limits on the bolometric luminosities of the progenitors assuming black-body X-ray spectra with temperatures of 30-150 eV. This is inspired by the fact that luminous super-soft X-ray sources have been suggested as the direct progenitors of type Ia supernovae. The upper limits of two supernovae in our sample are comparable to the luminosities of the brightest observed super-soft sources, ruling out such sources as the progenitors of these supernovae. In contrast to Liu et al (2012) we find that for SN2011fe we can rule out Eddington luminosity systems for black body temperatures as low as 40 eV. Our findings are consistent with statistical studies comparing the observed type Ia supernova rate to the number of super-soft sources or the integrated X-ray luminosity in external galaxies. This suggest that either the progenitors of type Ia supernovae are not accreting, nuclear burning white dwarfs, or that they do not look like the classical super-soft sources, e.g. because they are obscured.Comment: Accepted, MNRAS. 10 pages, 11 figures, 3 table

    Abnormal RasGRP1 Expression in the Post-Mortem Brain and Blood Serum of Schizophrenia Patients

    Get PDF
    Schizophrenia (SCZ) is a polygenic severe mental illness. Genome-wide association studies (GWAS) have detected genomic variants associated with this psychiatric disorder and pathway analyses have indicated immune system and dopamine signaling as core components of risk in dorsolateral-prefrontal cortex (DLPFC) and hippocampus, but the mechanistic links remain unknown. The RasGRP1 gene, encoding for a guanine nucleotide exchange factor, is implicated in dopamine signaling and immune response. RasGRP1 has been identified as a candidate risk gene for SCZ and autoimmune disease, therefore representing a possible point of convergence between mechanisms involving the nervous and the immune system. Here, we investigated RasGRP1 mRNA and protein expression in post-mortem DLPFC and hippocampus of SCZ patients and healthy controls, along with RasGRP1 protein content in the serum of an independent cohort of SCZ patients and control subjects. Differences in RasGRP1 expression between SCZ patients and controls were detected both in DLPFC and peripheral blood of samples analyzed. Our results indicate RasGRP1 may mediate risk for SCZ by involving DLPFC and peripheral blood, thus encouraging further studies to explore its possible role as a biomarker of the disease and/or a target for new medication

    Abnormal RasGRP1 Expression in the Post-Mortem Brain and Blood Serum of Schizophrenia Patients

    Get PDF
    Schizophrenia (SCZ) is a polygenic severe mental illness. Genome-wide association studies (GWAS) have detected genomic variants associated with this psychiatric disorder and pathway analyses have indicated immune system and dopamine signaling as core components of risk in dorsolateral-prefrontal cortex (DLPFC) and hippocampus, but the mechanistic links remain unknown. The RasGRP1 gene, encoding for a guanine nucleotide exchange factor, is implicated in dopamine signaling and immune response. RasGRP1 has been identified as a candidate risk gene for SCZ and autoimmune disease, therefore representing a possible point of convergence between mechanisms involving the nervous and the immune system. Here, we investigated RasGRP1 mRNA and protein expression in post-mortem DLPFC and hippocampus of SCZ patients and healthy controls, along with RasGRP1 protein content in the serum of an independent cohort of SCZ patients and control subjects. Differences in RasGRP1 expression between SCZ patients and controls were detected both in DLPFC and peripheral blood of samples analyzed. Our results indicate RasGRP1 may mediate risk for SCZ by involving DLPFC and peripheral blood, thus encouraging further studies to explore its possible role as a biomarker of the disease and/or a target for new medication
    corecore