132 research outputs found

    Toroidal vortices as a solution to the dust migration problem

    Get PDF
    PublishedJournal Article© 2016 The Authors.In an earlier letter, we reported that dust settling in protoplanetary discs may lead to a dynamical dust-gas instability that produces global toroidal vortices. In this Letter, we investigate the evolution of a dusty protoplanetary disc with two different dust species (1 mm and 50 cm dust grains), under the presence of the instability. We show how toroidal vortices, triggered by the interaction of mm grains with the gas, stop the radial migration of metre-sized dust, potentially offering a natural and efficient solution to the dust migration problem.The figures were created using SPLASH (Price 2007), an SPH visualization tool publicly available at http://users.monash.edu.au/∼dprice/splash. This Letter was supported by the STFC consolidated grant ST/J001627/1, and by the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013 grant agreement no. 339248). This Letter used the DiRAC Complexity system, operated by the University of Leicester IT Services, which forms part of the STFC DiRAC HPC Facility (www.dirac.ac.uk). This equipment is funded by BIS National E-Infrastructure capital grant ST/K000373/1 and STFC DiRAC Operations grant ST/K0003259/1. DiRAC is part of the National E-Infrastructure. This Letter also used the University of Exeter Supercomputer, a DiRAC Facility jointly funded by STFC, the Large Facilities Capital Fund of BIS and the University of Exeter

    Detonations in white dwarf dynamical interactions

    Get PDF
    In old, dense stellar systems collisions of white dwarfs are a rather frequent phenomenon. Here we present the results of a comprehensive set of Smoothed Particle Hydrodynamics simulations of close encounters of white dwarfs aimed to explore the outcome of the interaction and the nature of the final remnants for different initial conditions. Depending on the initial conditions and the white dwarf masses, three different outcomes are possible. Specifically, the outcome of the interaction can be either a direct or a lateral collision or the interaction can result in the formation of an eccentric binary system. In those cases in which a collision occurs, the infalling material is compressed and heated such that the physical conditions for a detonation may be reached during the most violent phases of the merger. While we find that detonations occur in a significant number of our simulations, in some of them the temperature increase in the shocked region rapidly lifts degeneracy, leading to the quenching of the burning. We thus characterize under which circumstances a detonation is likely to occur as a result of the impact of the disrupted star on the surface of the more massive white dwarf. Finally, we also study which interactions result in bound systems, and in which ones the more massive white dwarf is also disrupted as a consequence of the dynamical interaction. The sizable number of simulations performed in this work allows to find how the outcome of the interaction depends on the distance at closest approach, and on the masses of the colliding white dwarfs, and which is the chemical pattern of the nuclearly processed material. Finally, we also discuss the influence of the masses and core chemical compositions of the interacting white dwarfs and the different kinds of impact in the properties of the remnants.Comment: 18 pages, 6 figures. Accepted for publication in MNRA

    Smoothed Particle Hydrodynamics simulations of the core-degenerate scenario for Type Ia supernovae

    Get PDF
    The core-degenerate (CD) scenario for type Ia supernovae (SN Ia) involves the merger of the hot core of an asymptotic giant branch (AGB) star and a white dwarf, and might contribute a non-negligible fraction of all thermonuclear supernovae. Despite its potential interest, very few studies, and based on only crude simplifications, have been devoted to investigate this possible scenario, compared with the large efforts invested to study some other scenarios. Here we perform the first three-dimensional simulations of the merger phase, and find that this process can lead to the formation of a massive white dwarf, as required by this scenario. We consider two situations, according to the mass of the circumbinary disk formed around the system during the final stages of the common envelope phase. If the disk is massive enough, the stars merge on a highly eccentric orbit. Otherwise, the merger occurs after the circumbinary disk has been ejected and gravitational wave radiation has brought the stars close to the Roche lobe radius on a nearly circular orbit. Not surprisingly, the overall characteristics of the merger remnants are similar to those found for the double-degenerate (DD) scenario, independently of the very different core temperature and of the orbits of the merging stars. They consist of a central massive white dwarf, surrounded by a hot, rapidly rotating corona and a thick debris region.Comment: 17 pages, 10 figures. Accepted for publication in MNRA

    Spiral Disk Instability Can Drive Thermonuclear Explosions in Binary White Dwarf Mergers

    Full text link
    Thermonuclear, or Type Ia supernovae (SNe Ia), originate from the explosion of carbon--oxygen white dwarfs, and serve as standardizable cosmological candles. However, despite their importance, the nature of the progenitor systems that give rise to SNe Ia has not been hitherto elucidated. Observational evidence favors the double-degenerate channel in which merging white dwarf binaries lead to SNe Ia. Furthermore, significant discrepancies exist between observations and theory, and to date, there has been no self-consistent merger model that yields a SNe Ia. Here we show that a spiral mode instability in the accretion disk formed during a binary white dwarf merger leads to a detonation on a dynamical timescale. This mechanism sheds light on how white dwarf mergers may frequently yield SNe Ia.Comment: Final version (as in ApJL) with minor edit

    An upper limit to the secular variation of the gravitational constant from white dwarf stars

    Get PDF
    A variation of the gravitational constant over cosmological ages modifies the main sequence lifetimes and white dwarf cooling ages. Using an state-of-the-art stellar evolutionary code we compute the effects of a secularly varying G on the main sequence ages and, employing white dwarf cooling ages computed taking into account the effects of a running G, we place constraints on the rate of variation of Newton's constant. This is done using the white dwarf luminosity function and the distance of the well studied open Galactic cluster NGC 6791. We derive an upper bound G'/G ~ -1.8 10^{-12} 1/yr. This upper limit for the secular variation of the gravitational constant compares favorably with those obtained using other stellar evolutionary properties, and can be easily improved if deep images of the cluster allow to obtain an improved white dwarf luminosity function.Comment: 15 pages, 4 figures, accepted for publication in JCA

    White dwarf constraints on a varying GG

    Full text link
    A secular variation of GG modifies the structure and evolutionary time scales of white dwarfs. Using an state-of-the-art stellar evolutionary code, an up-to-date pulsational code, and a detailed population synthesis code we demonstrate that the effects of a running GG are obvious both in the properties of individual white dwarfs, and in those of the white dwarf populations in clusters. Specifically, we show that the white dwarf evolutionary sequences depend on both the value of G˙/G\dot G/G, and on the value of GG when the white dwarf was born. We show as well that the pulsational properties of variable white dwarfs can be used to constrain G˙/G\dot G/G. Finally, we also show that the ensemble properties of of white dwarfs in clusters can also be used to set upper bounds to G˙/G\dot G/G. Precisely, the tightest bound --- G˙/G∼−1.810−12\dot G/G \sim -1.8 10^{-12} yr−1^{-1} --- is obtained studying the population of the old, metal-rich, well populated, open cluster NGC 6791. Less stringent upper limits can be obtained comparing the theoretical results obtained taking into account the effects of a running GG with the measured rates of change of the periods of two well studied pulsating white dwarfs, G117--B15A and R548. Using these white dwarfs we obtain G˙/G∼−1.8×10−10\dot G/G\sim -1.8\times 10^{-10} yr−1^{-1}, and G˙/G∼−1.3×10−10\dot G/G\sim -1.3\times 10^{-10} yr−1^{-1}, respectively, which although less restrictive than the previous bound, can be improved measuring the rate of change of the period of massive white dwarfs.Comment: 6 pages, 3 figures. To be published in the proceedings of the conference "Varying fundamental constants and dynamical dark energy" (8 - 13 July 2013, Sexten Center for Astrophysics
    • …
    corecore