206 research outputs found

    The Ionizing Source of the Nucleus of NGC1097

    Full text link
    We present new observations in X-ray and optical/ultraviolet of the nucleus of NGC1097, known for the abrupt appearance of broad, double-peaked Balmer lines in its spectrum in 1991. These new observations are used to construct the spectral energy distribution (SED) of the central engine. From the SED we infer that this AGN is radio-loud and has a bolometric luminosity L_Bol ~ 10^42 erg/s, implying a low Eddington ratio of L_Bol/L_Edd ~ 10^{-4}. These results suggest that the central ionizing source is an advection-dominated accretion flow (ADAF) in the form of an ellevated structure which photoionizes an outer thin disk. We fit a simplified ADAF model to the SED and obtain limits on the values of the mass accretion rate Mdot and accretion efficiency \eta, namely Mdot/Mdot_Edd >= 10^{-3} and \eta <= 10^{-2}. We identify an energy budget problem: if the central photoionizing source is isotropic, the covering factor of the line-emitting portion of the thin accretion disk is ~ 6, i. e. the central source accounts for only 20% of the energy emitted in the double-peaked Balmer lines.Comment: 4 pages, 3 figures, to appear in the proceedings of "The Interplay among Black Holes, Stars and ISM in Galactic Nuclei", IAU 222, eds. Th. Storchi Bergmann, L.C. Ho, and H.R. Schmit

    Unification of X-ray winds in Seyfert galaxies: from ultra-fast outflows to warm absorbers

    Get PDF
    The existence of ionized X-ray absorbing layers of gas along the line of sight to the nuclei of Seyfert galaxies is a well established observational fact. This material is systematically outflowing and shows a large range in parameters. However, its actual nature and dynamics are still not clear. In order to gain insights into these important issues we performed a literature search for papers reporting the parameters of the soft X-ray warm absorbers (WAs) in 35 type 1 Seyferts and compared their properties to those of the ultra-fast outflows (UFOs) detected in the same sample. The fraction of sources with WAs is >60%, consistent with previous studies. The fraction of sources with UFOs is >34%, >67% of which also show WAs. The large dynamic range obtained when considering all the absorbers together allows us, for the first time, to investigate general relations among them. In particular, we find significant correlations indicating that the closer the absorber is to the central black hole, the higher the ionization, column, outflow velocity and consequently the mechanical power. The absorbers continuously populate the whole parameter space, with the WAs and the UFOs lying always at the two ends of the distribution. This strongly suggest that these absorbers, often considered of different types, could actually represent parts of a single large-scale stratified outflow observed at different locations from the black hole. The observed parameters and correlations are consistent with both radiation pressure through Compton scattering and MHD processes contributing to the outflow acceleration, the latter playing a major role. Most of the absorbers, especially the UFOs, have a sufficiently high mechanical power to significantly contribute to AGN feedback.Comment: Manuscript updated to match the MNRAS published version. Link to the related INAF news: http://www.media.inaf.it/2013/02/05/warm-absorbers

    Optical Emission Model for Binary Black Hole Merger Remnants Travelling through Discs of Active Galactic Nucleus

    Full text link
    Active galactic nuclei (AGNs) have been proposed as plausible sites hosting a sizable fraction of the binary black hole (BBH) mergers measured through gravitational waves (GWs) by the LIGO-Virgo-Kagra (LVK) experiment. These GWs could be accompanied by radiation feedback due to the interaction of the BBH merger remnant with the AGN disc. We present a new predicted radiation signature driven by the passage of a kicked BBH remnant throughout a thin AGN disc. We analyse the situation of a merger occurring outside the thin disc, where the merger is of second or higher generation in a merging hierarchical sequence. The coalescence produces a kicked BH remnant that eventually plunges into the disc, accretes material, and inflates jet cocoons. We consider the case of a jet cocoon propagating quasi-parallel to the disc plane and study the outflow that results when the cocoon emerges from the disc. Here we focus on the long time-scale emission produced after the disc outflow expands and becomes optically thin. The bolometric luminosity of such disc outflow evolves as Lt7/2L\propto t^{-7/2}. Depending on the parameter configuration, the flare produced by the disc outflow could be comparable to or exceed the AGN background emission at near-infrared, optical, and extreme ultraviolet wavelengths appearing \sim[20-500] days after the GW event and lasting for \sim[1-200] days, accordingly.Comment: 11 pages, 8 figures. Submitted to MNRA

    The role of the accretion disk, dust, and jets in the ir emission of low-luminosity active galactic nuclei

    Get PDF
    We use recent high-resolution infrared (IR; 1-20 μm) photometry to examine the origin of the IR emission in low-luminosity active galactic nuclei (LLAGN). The data are compared with published model fits that describe the spectral energy distribution (SED) of LLAGN in terms of an advection-dominated accretion flow, truncated thin accretion disk, and jet. The truncated disk in these models is usually not luminous enough to explain the observed IR emission, and in all cases its spectral shape is much narrower than the broad IR peaks in the data. Synchrotron radiation from the jet appears to be important in very radio-loud nuclei, but the detection of strong silicate emission features in many objects indicates that dust must also contribute. We investigate this point by fitting the IR SED of NGC 3998 using dusty torus and optically thin (τmid-IR ∼ 1) dust shell models. While more detailed modeling is necessary, these initial results suggest that dust may account for the nuclear mid-IR emission of many LLAGN. © 2013. The American Astronomical Society. All rights reserved..A.A.-H. acknowledges support from the Spanish Plan Nacional de Astronomía y Astrofísica under grant AYA2009-05705-E, CRAfrom PN-AYA2010-21887-C04.04. R.N.was supported by an appointment to the NASA Postdoctoral Program at Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA.Peer Reviewe

    Systematic search for gamma-ray periodicity in active galactic nuclei detected by the Fermi Large Area Telescope

    Get PDF
    We use nine years of gamma-ray data provided by the Fermi Large Area Telescope (LAT) to systematically study the light curves of more than two thousand active galactic nuclei (AGN) included in recent Fermi-LAT catalogs. Ten different techniques are used, which are organized in an automatic periodicity-search pipeline, in order to search for evidence of periodic emission in gamma rays. Understanding the processes behind this puzzling phenomenon will provide a better view about the astrophysical nature of these extragalactic sources. However, the observation of temporal patterns in gamma-ray light curves of AGN is still challenging. Despite the fact that there have been efforts on characterizing the temporal emission of some individual sources, a systematic search for periodicities by means of a full likelihood analysis applied to large samples of sources was missing. Our analysis finds 11 AGN, of which 9 are identified for the first time, showing periodicity at more than 4sigma in at least four algorithms. These findings will help in solving questions related to the astrophysical origin of this periodic behavior.Comment: 16 pages, 5 figures, 4 tables. Accepted by Ap

    Evidence for a Starburst within 9 pc of the Active Nucleus of NGC 1097

    Get PDF
    We report evidence for a recent burst of star formation located within 9 pc of the active nucleus of NGC 1097. The observational signatures of the starburst include UV absorption lines and continuum emission from young stars observed in a small-aperture HST spectrum. The burst is a few times 10^6 yr old, has a mass of approximately 10^6 solar masses, an observed luminosity of 1.5 x 10^7 solar luminosities and is obscured by approximately 3 visual magnitudes. The importance of this finding is two-fold: (1) the proximity of the starburst to the active nucleus and thus possible association with it; (2) its obscuration by and apparent association with a dusty absorbing medium, while the broad emission lines appear unobscured, suggesting that the starburst could be embedded in a circumnuclear torus as predicted in the Unified Model of active galactic nuclei.Comment: 12 pages, 3 eps figures, accepted for publication in ApJ Letter

    Constraining Sources of Ultra High Energy Cosmic Rays Using High Energy Observations with the Fermi Satellite

    Full text link
    We analyze the conditions that enable acceleration of particles to ultra-high energies, ~10^{20} eV (UHECRs). We show that broad band photon data recently provided by WMAP, ISOCAM, Swift and Fermi satellites, yield constraints on the ability of active galactic nuclei (AGN) to produce UHECRs. The high energy (MeV - GeV) photons are produced by Compton scattering of the emitted low energy photons and the cosmic microwave background or extra-galactic background light. The ratio of the luminosities at high and low photon energies can therefore be used as a probe of the physical conditions in the acceleration site. We find that existing data excludes core regions of nearby radio-loud AGN as possible acceleration sites of UHECR protons. However, we show that giant radio lobes are not excluded. We apply our method to Cen A, and show that acceleration of protons to ~10^{20} eV can only occur at distances >~ 100 kpc from the core.Comment: Extended discussion on former results; Accepted for publication in JCA

    Properties of Accretion Flows Around Coalescing Supermassive Black Holes

    Full text link
    What are the properties of accretion flows in the vicinity of coalescing supermassive black holes (SBHs)? The answer to this question has direct implications for the feasibility of coincident detections of electromagnetic (EM) and gravitational wave (GW) signals from coalescences. Such detections are considered to be the next observational grand challenge that will enable testing general relativity in the strong, nonlinear regime and improve our understanding of evolution and growth of these massive compact objects. In this paper we review the properties of the environment of coalescing binaries in the context of the circumbinary disk and hot, radiatively inefficient accretion flow models and use them to mark the extent of the parameter space spanned by this problem. We report the results from an ongoing, general relativistic, hydrodynamical study of the inspiral and merger of black holes, motivated by the latter scenario. We find that correlated EM+GW oscillations can arise during the inspiral phase followed by the gradual rise and subsequent drop-off in the light curve at the time of coalescence. While there are indications that the latter EM signature is a more robust one, a detection of either signal coincidentally with GWs would be a convincing evidence for an impending SBH binary coalescence. The observability of an EM counterpart in the hot accretion flow scenario depends on the details of a model. In the case of the most massive binaries observable by the Laser Interferometer Space Antenna, upper limits on luminosity imply that they may be identified by EM searches out to z~0.1-1. However, given the radiatively inefficient nature of the gas flow, we speculate that a majority of massive binaries may appear as low luminosity AGN in the local universe.Comment: Revised version accepted to Class. Quantum Grav. for proceedings of 8th LISA Symposium. 15 pages, 3 figures, includes changes suggested in referee report

    The impact of mergers on relaxed X-ray clusters - III. Effects on compact cool cores

    Full text link
    (Abridged) We use the simulations presented in Poole et al. 2006 to examine the effects of mergers on compact cool cores in X-ray clusters. We propose a scheme for classifying the morphology of clusters based on their surface brightness and entropy profiles. Three dominant morphologies emerge: two hosting compact cores and central temperatures which are cool (CCC systems) or warm (CWC systems) and one hosting extended cores which are warm (EWC systems). We find that CCC states are disrupted only after direct collisions between cluster cores in head-on collisions or during second pericentric passage in off-axis mergers. By the time they relax, our remnant cores have generally been heated to warm core (CWC or EWC) states but subsequently recover CCC states. The only case resulting in a long-lived EWC state is a slightly off-axis 3:1 merger for which the majority of shock heating occurs during the accretion of a low-entropy stream formed from the disruption of the secondary's core. Compression prevents core temperatures from falling until after relaxation thus explaining the observed population of relaxed CWC systems with no need to invoke AGN feedback. The morphological segregation observed in the L_x-T_x and beta-r_c scaling relations is reflected in our simulations as well. However, none of the cases we have studied produce sufficiently high remnant central entropies to account for the most under-luminous EWC systems observed. Lastly, systems which initially host central metallicity gradients do not yield merger remnants with flat metallicity profiles. Taken together, these results suggest that once formed, compact core systems are remarkably stable against disruption from mergers. It remains to be demonstrated exactly how the sizable observed population of extended core systems was formed.Comment: 19 pages, 8 figures, submitted for publication in MNRA
    corecore