73 research outputs found

    The secretory senescence in otorhinolaryngology: Principles of treatment

    Get PDF
    Atrophy or hypofunction of the salivary gland because of aging, radiotherapy or disease causes hyposalivation and impairs the quality of life of patients by compromising mastication, swallowing and speech and by leading to a loss of taste. Moreover, hyposalivation exacerbates dental caries and induces periodontal disease, and oral candidiasis. Currently, no satisfactory therapies have been established to solve salivary hypofunction. Current treatment options for atrophy or hypofunction of the salivary glands in clinical practice are only symptomatic and include saliva substitutes and parasympathetic agonists, such as pilocarpine, to stimulate salivary flow. However, parasympathomimetics have systemic side effects, so different treatment options are necessary, and research has recently focused on this. The main strategies that have been proposed to restore salivary gland atrophy and hypofunction are gene therapy by gene activation/silencing during stem cell differentiation and by the use of viral vectors, such as adenoviruses; cell-based therapy with salivary gland cells, stem cells and non-salivary gland and/ or non-epithelial cells to regenerate damaged salivary gland cells; replacement with tissue bioengineering in which organoids from pluripotent stem cells are used in the development of organ replacement regenerative therapy. Remarkable progression in this research field has been made in the last decade, but a definitive therapy for salivary gland hypofunction has not been developed due to intrinsic challenges that come with each approach. However, with research efforts in the future, a range of precision medicine therapies may become available individualized to each patient

    Involvement of the endocannabinoid system in the physiological response to transient common carotid artery occlusion and reperfusion

    Get PDF
    Background: The transient global cerebral hypoperfusion/reperfusion achieved by induction of Bilateral Common Carotid Artery Occlusion followed by Reperfusion (BCCAO/R) may trigger a physiological response in an attempt to preserve tissue and function integrity. There are several candidate molecules among which the endocannabinoid system (ECS) and/or peroxisome-proliferator activated receptor-alpha (PPAR-alpha) may play a role in modulating oxidative stress and inflammation. The aims of the present study are to evaluate whether the ECS, the enzyme cyclooxygenase-2 (COX-2) and PPAR-alpha are involved during BCCAO/R in rat brain, and to identify possible markers of the ongoing BCCAO/R-induced challenge in plasma. Methods: Adult Wistar rats underwent BCCAO/R with 30 min hypoperfusion followed by 60 min reperfusion. The frontal and temporal-occipital cortices and plasma were analyzed by high performance liquid chromatography-mass spectrometry (HPLC-MS) to determine concentrations of endocannabinoids (eCBs) and related molecules behaving as ligands of PPAR-alpha, and of oxidative-stress markers such as lipoperoxides, while Western Blot and immunohistochemistry were used to study protein expression of cannabinoid receptors, COX-2 and PPAR-alpha. Unpaired Student's t-test was used to evaluate statistical differences between groups. Results: The acute BCCAO/R procedure is followed by increased brain tissue levels of the eCBs 2-arachidonoylglycerol and anandamide, palmitoylethanolamide, an avid ligand of PPAR-alpha, lipoperoxides, type 1 (CB1) and type 2 (CB2) cannabinoid receptors, and COX-2, and decreased brain tissue concentrations of docosahexaenoic acid (DHA), one of the major targets of lipid peroxidation. In plasma, increased levels of anandamide and lipoperoxides were observed. Conclusions: The BCCAO/R stimulated early molecular changes that can be easily traced in brain tissue and plasma, and that are indicative of the tissue physiological response to the reperfusion-induced oxidative stress and inflammation. The observed variations suggest that the positive modulation of the ECS and the increase of proinflammatory substances are directly correlated events. Increase of plasmatic levels of anandamide and lipoperoxides further suggests that dysregulation of these molecules may be taken as an indicator of an ongoing hypoperfusion/reperfusion challenge

    Effect of acute administration of dietary Pistacia lentiscus L. essential oil on the ischemia-reperfusion-induced changes in rat frontal cortex and plasma

    Get PDF
    In this study Pistacia lentiscus L. essential oil (E.O.), a mixture of terpenes and sesquiterpenes, was tested for its protective effects in cerebral ischemia/reperfusion-induced injury in Wistar rat frontal cortex and plasma. Cerebral ischemia was produced by a 20 min bilateral common carotid artery occlusion followed by 30 min reperfusion. Pistacia lentiscus L. essential oil (E.O.) (200 mg/0, 45 ml of sunflower oil as vehicle) was administered via gavage 6 hours prior to ischemia. Rats were randomly assigned to four groups, ischemic/reperfused (I/R) and sham-operated rats treated with the vehicle or with E.O.. Different brain areas were analysed for fatty acid changes and expression of the enzyme cyclooxygenase-2 (COX-2). Ischemia/reperfusion triggered in frontal cortex a decrease of docosahexaenoic acid (DHA), the membrane highly polyunsaturated fatty acid (HPUFA) most susceptible to oxidation. Pre-treatment with E.O. prevented this change and led further to decreased levels of COX-2, as assessed by Western Blot. In plasma of ischemic/reperfused rats, E.O. administration increased both the DHA-to-eicosapentaenoic acid (EPA) ratio and levels of the endocannabinoid congeners palmytoylethanolamide (PEA) and oleoylethanolamide (OEA). The results obtained suggest that ischemia/reperfusion triggers a cerebral insult sufficient to cause a a region specific lipid peroxidation as evidenced by the detectable, significant decrease in the tissue level of DHA, the most abundant essential fatty acid of neuronal membrane phospholipids. Acute dietary pre-treatment with E.O. triggers modifications both in the frontal cortex, where COX-2 expression decreases and the decrease of DHA is apparently prevented, and in plasma, where PEA and OEA levels increase. We suggest that the activity of PEA and OEA, as endogenous ligands of the peroxisome proliferator-activated receptor (PPAR)-alpha, by inducing the peroxisomal beta oxidation, may explain the observed increase in the DHA/EPA ratio. The latter, in fact, might account for an increased metabolism of n-3 aimed at restoring DHA within damaged brain tissue. The possibility that changes in fatty acid metabolism and plasmatic availability of PEA and OEA are correlated events represents an issue worth future investigations

    Imported arboviral infections in Italy, July 2014-October 2015: A National Reference Laboratory report

    Get PDF
    BACKGROUND: Imported cases of infections due to Dengue (DENV) and Chikungunya (CHIKV) viruses and, more recently, Zika virus (ZIKV) are commonly reported among travelers returning from endemic regions. In areas where potentially competent vectors are present, the risk of autochthonous transmission of these vector-borne pathogens is relatively high. Laboratory surveillance is crucial to rapidly detect imported cases in order to reduce the risk of transmission. This study describes the laboratory activity performed by the National Reference Laboratory for Arboviruses (NRLA) at the Italian National Institute of Health in the period from July 2014 to October 2015. METHODS: Samples from 180 patients visited/hospitalized with a suspected DENV/CHIKV/ZIKV infection were sent to the NRLA from several Italian Hospitals and from Regional Reference Laboratories for Arboviruses, in agreement with the National Plan on human surveillance of vector-borne diseases. Both serological (ELISA IgM test and Plaque Reduction Neutralization Test-PRNT) and molecular assays (Real Time PCR tests, RT-PCR plus nested PCR and sequencing of positive samples) were performed. RESULTS: DENV infection was the most frequently diagnosed (80 confirmed/probable cases), and all four genotypes were detected. However, an increase in imported CHIKV cases (41 confirmed/probable cases) was observed, along with the detection of the first ZIKV cases (4 confirmed cases), as a consequence of the recent spread of both CHIKV and ZIKV in the Americas. CONCLUSIONS: Main diagnostic issues highlighted in our study are sensitivity limitations of molecular tests, and the importance of PRNT to confirm serological results for differential diagnosis of Arboviruses. The continuous evaluation of diagnostic strategy, and the implementation of laboratories networks involved in surveillance activities is essential to ensure correct diagnosis, and to improve the preparedness for a rapid and proper identification of viral threats

    Polysialylated-neural cell adhesion molecule (PSA-NCAM) in the human trigeminal ganglion and brainstem at prenatal and adult ages

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The polysialylated neuronal cell adhesion molecule (PSA-NCAM) is considered a marker of developing and migrating neurons and of synaptogenesis in the immature vertebrate nervous system. However, it persists in the mature normal brain in some regions which retain a capability for morphofunctional reorganization throughout life. With the aim of providing information relevant to the potential for dynamic changes of specific neuronal populations in man, this study analyses the immunohistochemical occurrence of PSA-NCAM in the human trigeminal ganglion (TG) and brainstem neuronal populations at prenatal and adult age.</p> <p>Results</p> <p>Western blot analysis in human and rat hippocampus supports the specificity of the anti-PSA-NCAM antibody and the immunodetectability of the molecule in postmortem tissue. Immunohistochemical staining for PSA-NCAM occurs in TG and several brainstem regions during prenatal life and in adulthood. As a general rule, it appears as a surface staining suggestive of membrane labelling on neuronal perikarya and proximal processes, and as filamentous and dot-like elements in the neuropil. In the TG, PSA-NCAM is localized to neuronal perikarya, nerve fibres, pericellular networks, and satellite and Schwann cells; further, cytoplasmic perikaryal staining and positive pericellular fibre networks are detectable with higher frequency in adult than in newborn tissue. In the adult tissue, positive neurons are mostly small- and medium-sized, and amount to about 6% of the total ganglionic population. In the brainstem, PSA-NCAM is mainly distributed at the level of the medulla oblongata and pons and appears scarce in the mesencephalon. Immunoreactivity also occurs in discretely localized glial structures. At all ages examined, PSA-NCAM occurs in the spinal trigeminal nucleus, solitary nuclear complex, vestibular and cochlear nuclei, reticular formation nuclei, and most of the precerebellar nuclei. In specimens of different age, the distribution pattern remains fairly steady, whereas the density of immunoreactive structures and the staining intensity may change and are usually higher in newborn than in adult specimens.</p> <p>Conclusion</p> <p>The results obtained show that, in man, the expression of PSA-NCAM in selective populations of central and peripheral neurons occurs not only during prenatal life, but also in adulthood. They support the concept of an involvement of this molecule in the structural and functional neural plasticity throughout life. In particular, the localization of PSA-NCAM in TG primary sensory neurons likely to be involved in the transmission of protopathic stimuli suggests the possible participation of this molecule in the processing of the relevant sensory neurotransmission.</p

    Transcriptional Responses of Cultured Rat Sympathetic Neurons during BMP-7-Induced Dendritic Growth

    Get PDF
    Dendrites are the primary site of synapse formation in the vertebrate nervous system; however, relatively little is known about the molecular mechanisms that regulate the initial formation of primary dendrites. Embryonic rat sympathetic neurons cultured under defined conditions extend a single functional axon, but fail to form dendrites. Addition of bone morphogenetic proteins (BMPs) triggers these neurons to extend multiple dendrites without altering axonal growth or cell survival. We used this culture system to examine differential gene expression patterns in naĂŻve vs. BMP-treated sympathetic neurons in order to identify candidate genes involved in regulation of primary dendritogenesis.To determine the critical transcriptional window during BMP-induced dendritic growth, morphometric analysis of microtubule-associated protein (MAP-2)-immunopositive processes was used to quantify dendritic growth in cultures exposed to the transcription inhibitor actinomycin-D added at varying times after addition of BMP-7. BMP-7-induced dendritic growth was blocked when transcription was inhibited within the first 24 hr after adding exogenous BMP-7. Thus, total RNA was isolated from sympathetic neurons exposed to three different experimental conditions: (1) no BMP-7 treatment; (2) treatment with BMP-7 for 6 hr; and (3) treatment with BMP-7 for 24 hr. Affymetrix oligonucleotide microarrays were used to identify differential gene expression under these three culture conditions. BMP-7 significantly regulated 56 unique genes at 6 hr and 185 unique genes at 24 hr. Bioinformatic analyses implicate both established and novel genes and signaling pathways in primary dendritogenesis.This study provides a unique dataset that will be useful in generating testable hypotheses regarding transcriptional control of the initial stages of dendritic growth. Since BMPs selectively promote dendritic growth in central neurons as well, these findings may be generally applicable to dendritic growth in other neuronal cell types

    Is physician assessment of alcohol consumption useful in predicting risk of severe liver disease among people with HIV and HIV/HCV co-infection?

    Get PDF
    Background: Alcohol consumption is a known risk factor for liver disease in HIV-infected populations. Therefore, knowledge of alcohol consumption behaviour and risk of disease progression associated with hazardous drinking are important in the overall management of HIV disease. We aimed at assessing the usefulness of routine data collected on alcohol consumption in predicting risk of severe liver disease (SLD) among people living with HIV (PLWHIV) with or without hepatitis C infection seen for routine clinical care in Italy. Methods: We included PLWHIV from two observational cohorts in Italy (ICONA and HepaICONA). Alcohol consumption was assessed by physician interview and categorized according to the National Institute for Food and Nutrition Italian guidelines into four categories: abstainer; moderate; hazardous and unknown. SLD was defined as presence of FIB4 &gt; 3.25 or a clinical diagnosis of liver disease or liver-related death. Cox regression analysis was used to evaluate the association between level of alcohol consumption at baseline and risk of SLD. Results: Among 9542 included PLWHIV the distribution of alcohol consumption categories was: abstainers 3422 (36%), moderate drinkers 2279 (23%), hazardous drinkers 637 (7%) and unknown 3204 (34%). Compared to moderate drinkers, hazardous drinking was associated with higher risk of SLD (adjusted hazard ratio, aHR = 1.45; 95% CI: 1.03-2.03). After additionally controlling for mode of HIV transmission, HCV infection and smoking, the association was attenuated (aHR = 1.32; 95% CI: 0.94-1.85). There was no evidence that the association was stronger when restricting to the HIV/HCV co-infected population. Conclusions: Using a brief physician interview, we found evidence for an association between hazardous alcohol consumption and subsequent risk of SLD among PLWHIV, but this was not independent of HIV mode of transmission, HCV-infection and smoking. More efforts should be made to improve quality and validity of data on alcohol consumption in cohorts of HIV/HCV-infected individuals

    Small molecule activators of the Trk receptors for neuroprotection

    Get PDF
    The neurotophin signaling network is critical to the development and survival of many neuronal populations. Especially sensitive to imbalances in the neurotrophin system, cholinergic neurons in the basal forebrain are progressively lost in Alzheimer's disease. Therapeutic use of neurotrophins to prevent this loss is hampered, however, by a number of pharmacological challenges. These include a lack of transport across the blood-brain barrier, rapid degradation in the circulation, and difficulty in production. In this review we discuss the evidence supporting the neurotrophin system's role in preventing neurodegeneration and survey some of the pharmacological strategies being pursued to develop effective therapeutics targeting neurotrophin function

    Gender differences in the use of cardiovascular interventions in HIV-positive persons; the D:A:D Study

    Get PDF
    Peer reviewe

    Switching to dual/monotherapy determines an increase in CD8+ in HIV-infected individuals: An observational cohort study

    Get PDF
    Background: The CD4/CD8 ratio has been associated with the risk of AIDS and non-AIDS events. We describe trends in immunological parameters in people who underwent a switch to monotherapy or dual therapy, compared to a control group remaining on triple antiretroviral therapy (ART). Methods: We included patients in Icona who started a three-drug combination ART regimen from an ART-naïve status and achieved a viral load ≤ 50 copies/mL; they were subsequently switched to another triple or to a mono or double regimen. Standard linear regression at fixed points in time (12-24 months after the switch) and linear mixed model analysis with random intercepts and slopes were used to compare CD4 and CD8 counts and their ratio over time according to regimen types (triple vs. dual and vs. mono). Results: A total of 1241 patients were included; 1073 switched to triple regimens, 104 to dual (72 with 1 nucleoside reverse transcriptase inhibitor (NRTI), 32 NRTI-sparing), and 64 to monotherapy. At 12 months after the switch, for the multivariable linear regression the mean change in the log10 CD4/CD8 ratio for patients on dual therapy was -0.03 (95% confidence interval (CI) -0.05, -0.0002), and the mean change in CD8 count was +99 (95% CI +12.1, +186.3), taking those on triple therapy as reference. In contrast, there was no evidence for a difference in CD4 count change. When using all counts, there was evidence for a significant difference in the slope of the ratio and CD8 count between people who were switched to triple (points/year change ratio = +0.056, CD8 = -25.7) and those to dual regimen (ratio = -0.029, CD8 = +110.4). Conclusions: We found an increase in CD8 lymphocytes in people who were switched to dual regimens compared to those who were switched to triple. Patients on monotherapy did not show significant differences. The long-term implications of this difference should be ascertained
    • …
    corecore