42 research outputs found

    Structural dynamics and divergence of the polygalacturonase gene family in land plants

    Get PDF
    A distinct feature of eukaryotic genomes is the presence of gene families. The polygalacturonase (PG) (EC3.2.1.15) gene family is one of the largest gene families in plants. PG is a pectin-digesting enzyme with a glycoside hydrolase 28 domain. It is involved in numerous plant developmental processes. The evolutionary processes accounting for the functional divergence and the specialized functions of PGs in land plants are unclear. Here, phylogenetic and gene structure analysis of PG genes in algae and land plants revealed that land plant PG genes resulted from differential intron gain and loss, with the latter event predominating. PG genes in land plants contained 15 homologous intron blocks and 13 novel intron blocks. Intron position and phase were not conserved between PGs of algae and land plants but conserved among PG genes of land plants from moss to vascular plants, indicating that the current introns in the PGs in land plants appeared after the split between unicellular algae and multicelluar land plants. These findings demonstrate that the functional divergence and differentiation of PGs in land plants is attributable to intronic loss. Moreover, they underscore the importance of intron gain and loss in genomic adaptation to selective pressure

    Further Characterization of Activin A-induced IgA Response in Murine B Lymphocytes

    Get PDF
    We have recently shown that activin A, a member of TGF-β superfamily, stimulates mouse B cells to express IgA isotype but other isotypes. In the present study, we further characterized effects of activin A on B cell growth and IgA expression. We found that activin A did not have effect on LPS-stimulated cell viability. In parallel, CFSE staining analysis revealed that activin A did not alter cell division. An increase of IgA secretion by activin A was completely abrogated by anti-activin A Ab but not by anti-TGFβ1 Ab. In the same conditions, no other isotypes are significantly affected by each antibody treatment. Finally, activin A, as similar to TGF-β1, increased IgA secretion by mesenteric lymph node cells. These results suggest that activin A can specifically stimulate IgA response, independent of TGF-β in the gut

    Tiul1 and TGIF are Involved in Downregulation of TGFβ1-induced IgA Isotype Expression

    Get PDF
    TGF-β1 is well known to induce Ig germ-line α (GLα) transcription and subsequent IgA isotype class switching recombination (CSR). Homeodomain protein TG-interacting factor (TGIF) and E3-ubiquitin ligases TGIF interacting ubiquitin ligase 1 (Tiul1) are implicated in the negative regulation of TGF-β signaling. In the present study, we investigated the roles of Tiul1 and TGIF in TGFβ1-induced IgA CSR. We found that over-expression of Tiul1 decreased TGFβ1-induced GLα promoter activity and strengthened the inhibitory effect of Smad7 on the promoter activity. Likewise, overexpression of TGIF also diminished GLα promoter activity and further strengthened the inhibitory effect of Tiul1, suggesting that Tiul1 and TGIF can down-regulate TGFβ1-induced GLα expression. In parallel, overexpression of Tiul1 decreased the expression of endogenous IgA CSR-predicitive transcripts (GLTα, PSTα, and CTα) and TGFβ1-induced IgA secretion, but not GLTγ3 and IgG3 secretion. Here, over-expressed TGIF further strengthened the inhibitory effect of Tiul1. These results suggest that Tiul1 and TGIF act as negatively regulators in TGFβ1-induced IgA isotype expression

    Differential sensitivity of target genes to translational repression by miR-17~92

    Full text link
    MicroRNAs (miRNAs) are thought to exert their functions by modulating the expression of hundreds of target genes and each to a small degree, but it remains unclear how small changes in hundreds of target genes are translated into the specific function of a miRNA. Here, we conducted an integrated analysis of transcriptome and translatome of primary B cells from mutant mice expressing miR-17~92 at three different levels to address this issue. We found that target genes exhibit differential sensitivity to miRNA suppression and that only a small fraction of target genes are actually suppressed by a given concentration of miRNA under physiological conditions. Transgenic expression and deletion of the same miRNA gene regulate largely distinct sets of target genes. miR-17~92 controls target gene expression mainly through translational repression and 5’UTR plays an important role in regulating target gene sensitivity to miRNA suppression. These findings provide molecular insights into a model in which miRNAs exert their specific functions through a small number of key target genesCX is a Pew Scholar in Biomedical Sciences. This study is supported by the PEW Charitable Trusts, Cancer Research Institute, National Institute of Health (R01AI087634, R01AI089854, RC1CA146299, R56AI110403, and R01AI121155 to CX), National Natural Science Foundation of China (31570882 to WHL, 31570883 to NX, 31570911 to GF, 91429301 to JH, 31671428 and 31500665 to YZ), 1000 Young Talents Program of China (K08008 to NX), 100 Talents Program of The Chinese Academy of Sciences (YZ), National Program on Key Basic Research Project of China (2016YFA0501900 to YZ), the Fundamental Research Funds for the Central Universities of China (20720150065 to NX and GF), Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2015R1C1A1A01052387 to SGK, NRF-2016R1A4A1010115 to SGK and PHK), and 2016 Research Grant from Kangwon National University (SGK)
    corecore