598 research outputs found
The personal learning environment (PLE) in based learning in problem solving: The use of e-portfolio
En el trabajo se busca analizar las posibilidades que nos brindan los Entornos Personales de Aprendizaje (Personal Learning Enviroment), como estrategia educativa con un gran auge en los últimos tiempos. Tras analizar su definición, buscamos la forma de relacionar el PLE con la enseñanza de las matemáticas y en especial con la resolución de problemas y el uso del E – portafolio por ser considerada una herramienta ideal para trabajar en estos entornos personales.The paper seeks to examine the possibilities offered Personal Learning Environments (PLE), as an educational strategy with a boom in recent times. After analyzing the definition, we seek to relate the PLE with mathematics teaching and especially with problem solving and the use of E - portfolio for being considered an ideal tool to work on these personal environments
Educational innovation: Use of ICT in teaching of Basic Mathematics
En el artículo se exponen los resultados obtenidos en una experiencia empírica sobre el uso de diferentes recursos tecnológicos en el proceso de enseñanza - aprendizaje de la asignatura Matemática Básica. Para ello se parte de la presentación de una serie de actividades que tienen como objetivo principal motivar la participación y el aprendizaje activo de los estudiantes, además de desarrollar las competencias matemáticas sugeridas en el proyecto PISA.
Palabras claves: matemáticas; destrezas; didáctica; tecnología.The article presents the results of an empirical experience on the use of different technological resources in the teaching - learning Basic Mathematics course. This is part of the presentation of a series of activities that are intended primarily to encourage participation and active learning of students, and develop math skills suggested in the PISA project
Educational Innovation: Implementation of the Introductory Physics in Blended Learning
El artículo presenta la experiencia de la asignatura Física Introductoria en la modalidad semipresencial
en la PUCMM/RSTA. La implementación del proyecto piloto tuvo varias fases incluyendo desde la
preparación de materiales hasta el establecimiento de los elementos de la estrategia y la orientación de los
estudiantes en la nueva modalidad. Los resultados se evaluaron utilizando diversas herramientas:
cuestionarios, encuestas on-line, entrevistas y pruebas de rendimiento. Éstas fueron orientadas a aspectos
relacionados con el estudiante, la asignatura, el profesorado, el contenido, la comunicación y el entorno
virtual. Los resultados obtenidos fueron satisfactorios en cada una de las áreas evaluadas, incluida el
rendimiento de los estudiantes.The article presents the experience of implementing the introductory physics course in b-learning format
in the PUCMM /RSTA. The implementation of the pilot project includes several phases from preparing
materials to establish the elements of the new strategy and guidance of students in the new method. The
results were evaluated using several tools including questionnaires to students, online surveys, interviews
and performance testing. These tools were oriented aspects of the student, the subject as well as aspects
related to the teacher, content, communication and the virtual environment. The results were satisfactory
in each of the areas evaluated as well as the performance of students
Bound statcs in quantum systems with position dependent effective masses
En este trabajo se estudian algunos sistemas mecánico-cuánticos unidimensionales sencillos caracterizados por una masa efectiva dependiente de la posición. Se consideran dos sistemas donde el potencial y la masa efectiva se definen a intervalos tomando valores constantes diferentes. Así como un caso en que estas dos magnitudes dependen suavemente de la posición. Los ejemplos analizados ilustran la influencia que una masa efectiva variable ejerce sobre la densidad de niveles de energía (de los estados ligados).We study some simple one dimensional quantum mechanical systems characterized by a position dependent effective mass. We consider two systems with piecewise potential and mass, as well as a case with a smooth position dependence of these quantities. These examples illustrate the influence that a non-constant effective mass has on the density of the (bound-state) energy levels.Facultad de Ciencias Astronómicas y Geofísica
Bound statcs in quantum systems with position dependent effective masses
En este trabajo se estudian algunos sistemas mecánico-cuánticos unidimensionales sencillos caracterizados por una masa efectiva dependiente de la posición. Se consideran dos sistemas donde el potencial y la masa efectiva se definen a intervalos tomando valores constantes diferentes. Así como un caso en que estas dos magnitudes dependen suavemente de la posición. Los ejemplos analizados ilustran la influencia que una masa efectiva variable ejerce sobre la densidad de niveles de energía (de los estados ligados).We study some simple one dimensional quantum mechanical systems characterized by a position dependent effective mass. We consider two systems with piecewise potential and mass, as well as a case with a smooth position dependence of these quantities. These examples illustrate the influence that a non-constant effective mass has on the density of the (bound-state) energy levels.Facultad de Ciencias Astronómicas y Geofísica
Técnicas inteligentes para el análisis de condiciones medioambientales
[ES] Como es bien sabido, la calidad del aire es un tema importante y preocupante en la actualidad que afecta no solamente a la salud humana sino a otros muchos aspectos como el cambio climático o la supervivencia de la biosfera. En los últimos años, numerosas entidades públicas se han ido adaptando a las restrictivas medidas de contaminación ambiental impuestas por las diversas normativas europeas, siendo España uno de los países obligados a cumplir estas normativas. Tanto en España como en otros países existen diversas redes de monitorización de la calidad del aire y de adquisición de valores meteorológicos de una forma continua. Estas redes de estaciones de medida no sólo están presentes en las grandes ciudades sino también en zonas periféricas, polígonos industriales y en zonas donde la preservación de la naturaleza es fundamental. Además, están sometidas a constantes procesos de reordenación para mejorar su función.
En la presente Tesis Doctoral se han aplicado diversas técnicas inteligentes (Soft Computing más específicamente) a conjuntos de datos públicos con información meteorológica y/o de calidad del aire. Las técnicas aplicadas llevan a cabo fundamentalmente dos tareas: reducción de la dimensionalidad y agrupamiento (clustering). Estas se han aplicado de forma aislada y de forma combinada para mejorar los resultados obtenidos en el análisis de la información medioambiental. Las técnicas de reducción de la dimensionalidad aplicadas son: Principal Component Analysis (PCA) como técnica aplicada en primer lugar para obtener una primera aproximación a la estructura del conjunto de datos, Locally Linear Embedding (LLE) como técnica no lineal local, Maximum Likelihood Hebbian Learning (MLHL) y Cooperative Maximum Likelihood Hebbian Learning (CMLHL) como modelos neuronales que implementan Exploratory Projection Pursuit, Curvilinear Component Analysis (CCA) como modelo no lineal que intenta preservar la distancia entre los puntos en la salida, Multidimensional Scalling (MDS) como técnica global no lineal basada en la matriz de distancias, Isometric Mapping (ISOMAP) como técnica derivada de MDS y los Self-Organizing Maps (SOM), un importante modelo neuronal que implementa aprendizaje competitivo.
Las técnicas de agrupamiento aplicadas han sido por una lado particionales: k-means como primer método a aplicar en agrupamiento y que busca la asignación de muestras a grupos aplicando métricas de distancia, SOM k-means que utiliza los algoritmos de SOM para la actualización de los pesos, k-medoids como técnica derivada de k-means y que asigna el centroide de cada grupo a uno de los puntos del mismo y fuzzy c-means, técnica que aplica lógica difusa para tareas de agrupamiento. Por otro lado, también se ha empleado el método aglomerativo jerárquico en el que se van formando los grupos de forma ascendente, junto con diversos métodos de evaluación de agrupamiento que sirven para determinar el posible número de grupos existentes en un conjunto de datos y dendrogramas para obtener una representación gráfica de la agrupación de los datos en forma de árbol.
Los casos de estudio han sido cuidadosamente seleccionados y se extienden desde el ámbito local, regional hasta el nacional. Por otra parte, también se ha dado importancia a los periodos de tiempo seleccionados. En alguno de los estudios se analizan periodos de tiempo tan cortos como un día para el análisis de la meteorología/calidad del aire en un breve periodo de tiempo en un lugar determinado, mientras que en otros se emplean ventanas temporales próximas a una década y en los puntos más representativos climatológicamente en España. Partiendo de uno o más conjuntos de datos públicos con la información más completa posible acerca de las condiciones medioambientales (meteorológica, de calidad del aire o ambas), pero siempre analizando variables determinantes en la caracterización de las condiciones medioambientales, el objetivo es extraer la información fundamental almacenada en los conjuntos de datos mediante las técnicas inteligentes. De esta forma es posible analizar las condiciones medioambientales en los casos de estudio seleccionados. En cada uno de los casos de estudio se hace un análisis de la situación meteorológica o de calidad del aire en las localizaciones y periodos seleccionados, buscando semejanzas y diferencias en las muestras de datos analizadas y haciendo énfasis en aquellas situaciones anómalas detectadas y tratando de dar explicación a las mismas. También se hace un análisis comparativo de los resultados obtenidos con las distintas técnicas empleadas, planteando las ventajas e inconvenientes del uso de cada uno de ellas en cada caso de estudio.
Las técnicas de reducción de la dimensionalidad resultan de gran utilidad para analizar gráficamente conjuntos de datos multidimensionales, encontrar relaciones en los datos y detectar situaciones anómalas. De manera complementaria, las técnicas de agrupamiento revelan la estructura de un conjunto de datos asignando las muestras de datos a los distintos grupos en función de las medidas de distancias y similitud aplicadas. Esto resulta de gran utilidad en el presente trabajo para entender las semejanzas y diferencias en la meteorología y/o calidad del aire de los distintos puntos seleccionados en cada caso de estudio.
[EN] It is well known that air quality is an important and worrying issue nowadays, affecting not only human health but also many other aspects such as climate change or the survival of the biosphere. In recent years, many public institutions have been adapted to the restrictive normative about environmental pollution imposed by European regulations, being Spain one of the countries that must comply with these regulations. Both in Spain and in other countries there are various air-quality networks and stations for the continuous acquisition of meteorological parameters. These networks are not only present in big cities, but also in peripheral and industrial areas, as well as in places where the preservation of nature is fundamental key issue. Furthermore, they are constantly rearranged to improve their function.
In present PhD Thesis, different intelligent techniques (more specifically, Soft Computing techniques) have been applied to publicly available databases with air quality and/or meteorological information. The applied techniques perform two fundamental tasks: dimensionality reduction and clustering. They have been applied in isolation and in conjunction in order to improve the results in the analysis of environmental conditions. The applied dimensionality reductions techniques are: Principal Component Analysis (PCA) as the technique firstly applied to obtain an approximation to the dataset structure, Locally Linear Embedding (LLE) as a non-linear local technique, Maximum Likelihood Hebbian Learning (MLHL) and Cooperative Maximum Likelihood Hebbian Learning (CMLHL) as neural models which implement Exploratory Projection Pursuit, Curvilinear Component Analysis (CCA) as a non-linear technique which tries to preserve the interpoint distance in the output space, Multidimensional Scalling (MDS) as a non-linear global technique operating with the distance matrix, Isometric Mapping (ISOMAP) as a technique derived from MDS and Self-Organizing Maps (SOM), as a competitive learning neural model.
The applied clustering techniques are, on the one hand partitional techniques: k-means as the clustering technique firstly applied, which assigns samples to groups using distance metrics, SOM k-means which use the SOM algorithm for the weight updating process, k-medoids as a k-means derived technique which assigns the centroid of each cluster to one of the belonging samples, and fuzzy c-means as a fuzzy-logic based technique for grouping samples. On the other hand, hierarchical agglomerative techniques have also been applied (where groups are formed in an ascending way) together with different clustering evaluation indexes, used to determine the possible number of existing groups in a dataset, and finally dendrograms for a tree-form graphical representation of clustering.
Case studies have been carefully selected and range from local, regional to national contexts. Similarly, the selected periods of time have also been a priority. In some of the studies, the analyzed period of time is one day long, considered for the analysis of meteorological / air quality in a short time interval in a certain place, while in other cases, long periods of time (close to a decade), are used to analyze some of the most climatological representative places in Spain. From one or more public datasets comprising all the information about environmental conditions (weather, air quality, or both), but always analyzing key variables in the characterization of environmental conditions, the goal is to extract the meaningfully information in the datasets by applying intelligent techniques. This leads to an analysis of the environmental conditions in the selected case studies. In each case study, an analysis of the weather or air quality conditions is carried out in the selected places and periods of time, searching for similarities and differences in the analyzed data samples, emphasizing those detected anomalous situations and trying to give an explanation to these phenomena’s. A comparative analysis of the results obtained with the different techniques applied is also performed, considering the advantages and disadvantages of using each of them in each case study
Dimensionality reduction techniques are useful for graphically analyzing high-dimensional data sets, find relationships in datasets and detect anomalous situations. Complementarily, clustering techniques reveal the structure of datasets by assigning the data samples to different clusters depending on the applied distance and similarity measures. This is useful in present work to understand the similarities and differences in the meteorological and / or air quality conditions of the different locations selected in each case study
Microondas para aplicaciones tecnológicas
Cuadernillo didáctico y de divulgación científica presentado en la Semana de la Ciencia y la Tecnología.Peer reviewe
The Koch monopole: a small fractal antenna
Fractal objects have some unique geometrical properties. One of them is the possibility to enclose in a finite area an infinitely long curve. The resulting curve is highly convoluted being nowhere differentiable. One such curve is the Koch curve. In this paper, the behavior the Koch monopole is numerically and experimentally analyzed. The results show that as the number of iterations on the small fractal Koch monopole are increased, the Q of the antenna approaches the fundamental limit for small antennas.Peer Reviewe
- …