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Wc study some simple one dimensional quantum mcchanical systems characterizcd by a position dependent effective mass. Wc consider lwo 
systems with pieccwisc fíat potential and mass. as well as a case with a smooth position dependente on (hese two quantities. These exampies 
i Ilústrate tile influente that a non-constant effective mass has on the density of tbe (bound state) enerav levéis.
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En este trabajo se estudian algunos sistemas mecánico-cuánticos unidimensionales sencillos caracterizados por una masa efectiva dependiente 
de la posición. Se consideran dos sistemas donde el potencial y la masa efectiva se delinen a intervalos tomando valores constantes diferentes, 
así como un caso en que estas dos magnitudes dependen suavemente de la posición. Los ejemplos analizados ilustran la influencia que una 
masa efectiva variable ejerce sobre la densidad de niveles de energía (de los estados ligados).
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1. Introduction

A quantum mcchanical particle endowed wiih a position- 
dependent effective mass conslitutes an intercsiing and useful 
model for the study of many physical problems. The effec- 
live mass approximalion provides an important and widely 
used theory for the determination of the electronic proper- 
lies of scmiconductors 11] and quantum dots [2J (however, as 
is shown in Ref. 3, Ihis approximatión is valid only for sys- 
tems with large cohcrence lengths, which is nol the case of 
liigh Te supercondiictors). Interest in this kind of approach is 
growing nowadays, slimulatcd by recent progress in crystal- 
growth techniques for the production of nonuniform semi­
conductor spccimcns. Much work has been done over the last 
ycars on the study of the solutions of the Schrddinger cqua- 
tion dcscrihing systems with non-constant mass. Some ex- 
acily soluble models with smooth potential and mass stops 
have been discovercd [4, 5|.

The concept oí' effective mass also plays an important 
role within the strictures of the energy density functional 
(EDF) approach to the quantum many body problem. The 
EDF formal ism has yielded rcasonablc theorctical predic- 
lions of many experimental properties for several quantum 
many body systems. Within the EDF approach, the non-local 
tei'ins of the associated potential can be olten expressed as a 
position dependence on an appropriate effective mass m*(r). 
This lonnalism has been éxtensiveíy used in nuclei [6], quan­
tum liquids [7], 3 He clusters [8], and metal clusters [9]. The 
concomitan! single particle wave functionsand eigenenergies 

comply with a Schrddinger equalion of the forro

Besides its practical applicalions, the study of quantum 
mechanical systems with a position dependent mass also 
raises interesting conceptual problems of a fundamental na- 
ture. For exatnple, Lévy-Lehlond has recently discussed the 
quantum mechanical problem of a particle with posilion de­
pendent mass in conneclion with the concept of in.stantaneous 
Galilean invariance [1()|. The path integral approach to quan­
tum mechanics for systems with nonconstant mass has also 
been studied [11J.

The aims of the presen! work are; (a) to study, taking inlo 
account effécts of a mass dependence on position, the bound 
states of some simple one dimensional systems usually dis­
cussed in elemenlary texis on quantum mechanics; and (b) to 
illústrate theeffecton the density of bound state energy levels 
of a position dependent mass.

The paper is organized as follows. !n Sect. 2 wc provide a 
brief review oí'the Schrddingerequation for systems with po­
sition dependent effective mass. Sect. 3 deais with the cigen- 
l'unctions and eigenenergies of a finito potential well with dif- 
ferent inside and outside masses. In Sect. 4 we consider an in­
finite potential well with a mass stop. In Sect. 5 wc compute 
numericallv the eigenfunctions and energy eigenvalues cor- 
responding to a particle with a Gaussian shaped :r-dcpcndenl 
effective mass in an harmonio oscillator potential. Finally, 
some conclusions are drawn in Sect. 6.
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2. Schrodinger equation with a position depen­
dent effective mass

The one-dimcnsional time-independent Schrodinger equa- 
tion associated with a particle endowed with a position de­
pendent effective mass reads [4. 5,10]

h2 ) d2^ d rr 1
,2m(:r)j

d.r2 d.r 2m(;r) _

di>
7Ü

+ l'(.r)Hr) = E'P(.r), (2)

where uí(.r) stands for the particle’s effective mass, 1 ’(.r) de­
notes the pótentiai, $(.?) is the particle’s wave function (wf) 
and h is Planck’s constant. This equation can be cast as

H’l' = Eí', (3)

where the Hamiltonian opcralor H is given by

H = P
1

2rri(.r.)
(4)

The differential equation (7) lor n(.r) looks like the ordinary 
(r.e, constant mass) time-independent Schrodinger equation, 
but with an energy dependent pótentiai function IF(z,£). 
The pótentiai H' is usually retened to as the local equivalen! 
pótentiai (LEP).

The wave. function connection rules across an abrupt in- 
terface (i.e., a discontinuity in the effective mass) associated 
to the Schrodinger equation (2) are: i) the continuity of the 
wave function,

'I'- = *+; . (9)

and ii) the continuity of 'P'/m(.r),

/ 1 \ _ [ 1 d*\
d.r J _ \m(;rr) d.r / + ’

where the subindexes - and + denote, respectively, the lefl 
and righl hand sides of the mass discontinuity.

The Schrodinger equation (2) can be derived from an en­
ergy variational principie akin to Ihe standard one, that yiclds 
the wave equation for systeins with constant mass. Let lis 
eonsider the energy expectation valué

d ti2 d

d.r 2m(.r) d.r
+ F(.r)

Ti2

2m(.r)
(5)

lt is easy to verify that the minimization of the mean en­
ergy {H) underthe normalizaciónconslraint ('J'I'I') = 1 leads 
lo the differential equation (2). Actually, the Schrodinger 
equation (I) that appcars in the EDF formalism is essentially 
óbiained in the above fashion [12], Furthermore, the varia- 
lional principie will prove useful in orderto understand sotne 
qualitative features of the energy eigenfunctions of systcms 
with a position dependent mass.

An importan! techniquc used todeal with the Schrodinger 
equation (2) is based on the change of variables [12]

'P(.r) = u(a,-), (6)
V ni

where m stands for “true” naked mass of the particle.
Il is slraightforward to verify that the function u(;t) com­

piles with the differential equation

3. Finite pótentiai well with different inside and 
outside masses

In this scclion wc are going to compute the bound state 
eigenenergies ol a finite pótentiai well with an effective mass 
inside different from that outside the well. The corresponding 
pótentiai V(.r) is given by

r(.r)=(), |.r| < L/2,

V(x) = K |.r| > £-/2, (II)

where L is the width of the well. The position dependent ef 
feclive mass is (see Fig. I a)

m.(.r) = m. i, ¡,r| < £/2,

m(.r) = ni-,. |a:| > £/2. (12)

The wave funetions inside ['l'i(.r)] and outside |í''j(.r)] 
the well verify. respectively, the differential equations

and

(7)

where E stands for the concomitant energy eigenvalue. Foi 
lowing the usual procedure we propose the forros

(.8)
’I' i — sin £.r

'I' i = eos F.i:

(odrl solutions),

(oven solutions), (15)
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for the odd oríes. Equations (21) and (22) lead, respectively. 
to

(23)

and

(b)

(24)

Fi c; I ’ R r I. (á.) A square potential well of finí te deplu. The effeetive 
mass adopis the valúes mi inside the well and outside it. (b) An 
i lili nite potential well with a mass step. The effeetive mass is equal 
lo ni i (Icf't side of the well) and to mi (right side of the well).

which can he recast underthe guise

\/D2cC~-z2 
tan ~ = o-------------------

and

where

(25)

(26)

(27)

for the (unnormalized) wave function inside the well, the eos 
and sin solutions describing even and odd eigenfunctions, rc- 
speclively. On the other hand. the wave function outside the 
well has the appeararice

'I'2 = CeXp(~A-'|.i:|). (16)

Replacing the ansatzs (15) and (16) in Eqs. (13) and (14), we 
obtain, respectively.

k2 2nnE

and

k'2
2üij¿(V’ — E)
c

These tWó equations imtnediately lead to

k -1/2

(19)

wliere

o (20)

The boundary condilions (9) and (10) al .r = +L/2 are 

Jt will prove convenient for our fortheóming discussion to ex- 
press (he inasses nii,> in terms of a single variable in delined 
by

iii\ = n2in, and in> = m. (28)

The elfeclive mass valué ni adopted by our particie when it is 
outside the well is regarded lo coincide with the “truc” mass 
of the particie. In other words, m is the mass of the parli- 
cle when it can be regarded as a Iree particie thal does not 
interact with its environment.

The solutions z of Eq. (25) provide the energy eigenval- 
ues associated with the bound states of even parity, while the 
roolsof Eq. (26) eorrespond lo the eigenenergies of the bound 
states with odd parity. In the particular case of n = 1 (i.e., 
mi =■ m> = ni), Eqs. (25)and (26) reduce to the well-known 
transcendental equations determining the bound eigenvalues 
of a linite square well [13], In Fig. 2 we depict the behav- 
ior, as a function of the parameter o-, of the energy eigenval­
ues associated with the íirst five bound eigenstates of a linite 
well with D = 7. This valué ol D determines, in the case of 
« = 1, a linite square well with five bound states. The num- 
ber jV of bound states is not constan! fordifferent valúes of o. 
It is detérmined by the integer parí of 2o£>/t, according to

ros — C exp
.V = 1 I- Iiit.

lor the even solutions, and

sin

k
---- eos
mi

Ck'
--------exp

111-2

— C' exp

Ck'
------- exp

Í112

■

(21)

2o
~ \ 2/i2 ) (29)

The above expression implies that for a small enough valué 
of o there is only one bound slate. regardless of the valué of 
well parameter D. The number of bound states, for a given 
valué of D, is an increasing function of o. The roots z of 
Eqs. (25) and (26) lie in the interval

0 < c < ni). (30)
(22)
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Figure 2. Tlic lirst five energy eigeriválues of a finite square well 
with different "inside" and "outside" masses, as a function ol the 
parameter o. We take h — mu = 1 and D — 7 fsee Eq. (27)]. The 
energy is given in units of 1/L2.

The wave funetions 'i'j(.r) (left side) and (right
side) verify, respectively, lite differential equations

(34)

and

(35)

where E stands for the concomitant energy eigenvalue and 
<í'| (0) = 'F_>(£) = (). Following the usual procedure we pro­
pose the ansatzs

'P [ (.r) = sin k\:r. (36)

and

'1'2 (r) = C sin /.:3.r + C' eos (37)

for the (unnormalized) wave funetions in each side of the 
well. The energy E is now given by

which means that the eigenenergies belong to the interval

2h¿D2
0<Ei<—= K (31)

niL-

¡n the case of constant mass this last equation simply means 
thtn the energy ot a bound state musí belong to [0, V]. How- 
ever, the lact that the.se bounds on the energy spectra do not 
dependmi n, while the numher of bound stares increases with 
o, has an ínteresting physical consecucnce: the density of 
simes is an increasiiig function ofa. More specifically. when 
the effective mass inside the well is iower than the effective 
mass outside (o < 1), the density of status ofthe bound spec- 
lra is Iower than the density of slates associated with the con­
stant mass situation, The oposite behavior occurs when the 
clfcciive mass inside the well is larger than the mass outside. 
'filis elfecl on the density of slates can be clearly appreciated 
in Fig. 2.

w'hich implies that

A-2

frk2 rrk2

2ni\ 2iii2
(38)

(39)

The connection conditions (9) and (10) at ,r = L/2 are now

sin i = C sin 7; + C cósfz,

4. Infinite pótentiai well with mass step

In ihis section we study the bound state eigenenergies of an 
infinite pótentiai well in which an effective mass step ex- 
¡sis: the valué mi of the effective mass in the left side oí 
llic well (.r € [(). T/2]) difluís form its right side counterpari 
nh (.re The pótentiai K(-t’) is given by

~ eos z = C cas 7; - C’ sin yz, (40)

where k-i — k, 3. = Lk ¡2, and 7 = m-i¡m 1. The boundary 
condilion on 'I'> ál ir = L is

C sin 2y: + C'eos 2* t = 0, (41)

Solving for C in the above equation and replacing in (40) we 
arrive al

sin z — C (sin 72 — tan 27T eos72:), (42)

and

eos z =— (eos 72 + tan 2qz sin-yz). (43)

whose ratio is
( sin o 2 — t.an 2pe eos 72

tan? = 7--------------------- -----;——
\ eos 7 z + tan ¿72 sin 72

7 t.an 7z. (44)

í’(.r) = 0, 0 <x < L.

U(.r) -= óo, < () or .r > L, (32)

where /. is the width ofthe well. The position dependent ef- 
Icetivc mass is given by (see Fig. Ib)

■m(.r) = m\, 0 < r < L/2.

in(x) = m>, L/2 < ,r < L. (33)

The roots z of this transcendental equation determine the 
bound state eigenenergies of the mass-step infinite well. We 
lind, for all valúes of 7, an infinite nuniber of roots and, cor­
respondí ngly, an infinite nmnber of bound states (as il hap- 
pens, of course, in the 7 = I. instance that describes the well- 
known infinite well with constant mass). The eigenenergies 
are given by

(45)
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7

FIGURE 3. The first five energy eigenvalues of an infinite square 
well with a inass step as a function of the parameter 7. We sel 
í¡ = mi = 1. The energy is given in units ofl/L2.

z

FIGURE 4. The intersections of the curves tan 2 and -7 tan 73, for 
7 = 4, yield the valúes of z = k.L¡2 that determine the eigenener­
gies of the infinite potential well with <1 mass step.

Il'sj is a solution of Eq. (44) for a given 71, then ¿7 = 
3.1/71 is a root of a similar equation but with a new vakte 
of 7' given by 77 = I/71. This symmetry of Eq. (44) is just 
a conseqtience of the fací ihal mterchanging the massés mi 
and no we end up with essentially the saíne physical situa- 
tion as the original one. More specifically, by interchanging 
the ma.sses we obtain a mirror image of Ihe original problcm. 
It i.s olear from the above considerations that there is no loss 
of gcncrality if we restrict our fortheoming discussion to val­
úes of 7 larger than unity (that is, to mass steps where the 
left handsidc mass m 1 i.s smaller than the rigth hand side one 
ui>}.

The behaviorofthe first five energy eigenvalues as a func- 
lion of 7 is depicted in Fig. 3. We can see that the density of 
states increases with 7.

The transcendental Eq. (44) can be solved exactly in the 
particular case of 7 = 2. For such a valué the equation ven­
ded by the variable z reduces itself to 

and the corresponding eigenenergies approach the limiting 
valúes

(71=1,2,...). (51)

The above equation imphes that, when m.-¿ is much larger 
than mi, theenergy eigenvaluesoí the syslem behaveas if (he 
particie had a constan! mass equal to m-> and wcre confined 
to an infinite well of lenght i/2. As lar as the energy spec- 
irum is concerned, “the larger mass wins”. It is also worth 
considering the behavior, as 7 —> Oca of the coefíicients C 
and C' appeafing in the expresión for ^(.r). It is casy (o see 
from Eqs. (42) and (43) that, in that iimit,

(52)

and

tan z(tan2 z - 5) = 0. (46)
C = (-l)n7- (53)

The corrcsponditig eigenvalues of the energy are

and

2ti2 («.retan \/5 + nir)2

m i L2

2?Z2 ( tt — atetan \/5 4- un)2

niiL2

(n=l,2,...), (47)

(n=l,2,...), (48)

(h-1,2,...). (49)

It is also instructive to consider the limiting situation of
7 —> 00. In that case, the roots of the transcendental Eq. (44) 
tend lo (see Fig. 4)

The above two equations imply that, for iarge valúes of 7, 

í2"(;r) = (-l)“7SÍta^^r. (54)

Summing up, when m2 >> ti? ¡ the eigenstates of the system 
behave in such a way that

• The particie is ahnost compietely confined to the parí 
of the well where the effeetive mass adopts its largest 
valué m>.

• Within that parí of the well where the mass valué is 
m2, the wave function looks like that of a particie of 
mass rn2 in a well of lenght L¡'2.

• The eigenenergies approach thoseofan infinite well of 
lenght L/2 with constant mass m-j.
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Figure 5- The lirst ten energy eigenvalues of the harmonio oscil- 
lator pótentiai j-2/2 with a position dependent effective mass given 
by m(r) = (1 +,f exp(-.r2)]-1. as a function ofthe parameter ¡3.

X x

Figure 6. (a) The effective mass m(ar) as a function of the coor­
dínate .r for H = 20 and the associated local equivalent pótentiai 
for various cven (continuous line) and odd (dashed line) cigcnstates 
of the harmonic pótentiai with effective mass. For comparison. the 
harmonic oscillator pótentiai (dotted lino) is also shown. (b) Same 
as Fig. 6a for /? = -1/2.

5. An harmonic oscillator model with position 
dependent inass

In this section we consider a one dimensional harmonic po- 
lential (setting h2/‘2m = 1/2)

V(.r)=y, (55)

along whh an effective mass given by

We have that

Tr
2m(at)

(56)

l3 > 0 =?■ m(:r) < 1,

< 0 => m(aQ > 1. (57)

The Schrodinger equation (6) has been solved numerically by 
recourse to the Numerov standard numérica! algorithm [14]. 
The corrcsponding lirst ten eigenvalues are depicted in Fig. 5 
for J e (-1- 100]. For ciarity’s sake the even and the odd 
states are displayed separatcdly. Notíce that the ettecl ol a 
smooth position dependent effective mass on the energy lev­
éis is qualitatively the same as the one produced by a piece- 
wise lia! effective mass. The ievel density is a monotonous 
decrcasing function of the parameter ¡3. As ¡3 increases, and 
the effective mass m(.r) decreases, the gap bctween ihe en­
ergy levels increases.

Since we now have both a smooth pótentiai and a smooth 
mass it is instructive to consider the associated local equiv­
alen! pótentiai (8). The LEPs corresponding to the first ten 
cigcnstates and J = 20 are depicted in Fig. 6a. Il is inter- 
esljng to noticc that the LEP becomes, in the case of cx- 
citcd states, a histable pótentiai. Morcover, the lwo concomi­
tan! pótentiai wclls become deeper as we consider greater 
eigenenergies. As a consequence, the probability density as-

X

Figure 7. The probability density function p(.r) = ^'=1 l'í'( r)|2 
corrcsponding to ten particles occupying the first single particle 
states (one partirle per level). competed for the same d valúes as in 
Fig. 6. Noticc that /j = 0 corrcsponds to the constant mass case.

sociated with the eigenfunctions of the system will tend to be 
small near .t = 0. The neighbourhoodof r = ü, where the ef­
fective mass adopts its lowcst valué, acts as a “repcller". This 
is clcarly shown in Fig. 7, where we depiel the probability 
density p(x) = l^'C'OI2 corresponding to ten particles
occupying the ñrst ten single particle slates (one particle per 
level).

The LEPs for the lirst ten eigenstates and /? = -1/2 are 
displayed in Fig. 6b. In this case the effective mass near a; = 0 
is larger than the one at |a:| —> 00, while the LEP function at- 
tains a deeper mínimum near ;r = (). As in the previous case, 
the cffcct due 10 the position dependent mass becomes more 
evidenl for highly éxcited states.

For both positivo and negativo valúes of the parameter (3, 
the wave function tends to concéntrate towards those places 
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in which thc effective mass adopts its largesl valúes (see 
Ftg. 7). This behavior mi míes that exhibited by thc cigcn- 
states oí' ihe infinite well with a mass step. The features ex­
hibited by the cigenfunctions oí’ systems with variable mass 
can be nicely interpreled in terms of the energy variatipnal 
principie discussed in Sec.t II. By inspection ol the mean en­
ergy (5) it is not hard to realize that. in orden lo minimizo thc 
kiiiétic energy conlribution to (H), the wave function must 
avoid those regións in which the effective mass adopts small 
valúes.

6. Conclusions
We have studied the bound states of three important one di­
mensional quantum systems with a posilion dependen! effec­
tive mass. For two of the systems considerad. Le., an intinilc 
potcntial well with a mass step and a finito square well with 
diffcient "insidc” and “outside" masses, the energy eigen- 

functions and eigenvalues can be obtained by soiving an ap- 
propriatc transcendental equation. Our third example, invotv- 
ing a smooth potential and a smooth effective mass. is solved 
by recourse lo the numérica! integración of the corresponding 
Schródinger equation.

The eoncept of effective mass plays an important role 
in many applicalions of quantum mechanics. The cxamplcs 
anaiyséd in the present work ¡Ilústrate sume aspeéis of the 
behavior of quantum systems with variable masses. We be- 
lieve that our discussion shows that the quantum mechanics 
of systems with effective masses can be prolitably discussed 
at thc level of elementary quantum mechanics courscs.
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