151 research outputs found

    Portable inhalation systemfor a dosed insulin supply

    Get PDF
    Интенсивная инсулинотерапия необходима для контроля состояния пациентов с диабетом.Несмотря на постоянное усовершенствование инсулинотерапии, все ещ? существует проблема неудобства режимов многократных инъекций инсулина. Целью данной работы является создание системы, позволяющей осуществлять ингаляцию инсулина.Intensive insulin therapy is necessary for the control of a condition diabetic patients. Despite the constant improvement of insulin therapy, there is still the problem of discomfort repeated regimes of insulin injections. The objective of this work is to create a system that allows the inhalation of insulin

    Thymus-specific serine protease contributes to the diversification of the functional endogenous CD4 T cell receptor repertoire

    Get PDF
    Thymus-specific serine protease expression in stromal as well as hematopoietic cells in the thymus is needed for diversification of the endogenous repertoire of TCRs specific for a particular protein antigen

    An extracellular domain of the accessory β1 subunit is required for modulating BK channel voltage sensor and gate

    Get PDF
    A family of tissue-specific auxiliary β subunits modulates large conductance voltage- and calcium-activated potassium (BK) channel gating properties to suit their diverse functions. Paradoxically, β subunits both promote BK channel activation through a stabilization of voltage sensor activation and reduce BK channel openings through an increased energetic barrier of the closed-to-open transition. The molecular determinants underlying β subunit function, including the dual gating effects, remain unknown. In this study, we report the first identification of a β1 functional domain consisting of Y74, S104, Y105, and I106 residues located in the extracellular loop of β1. These amino acids reside within two regions of highest conservation among related β1, β2, and β4 subunits. Analysis in the context of the Horrigan-Aldrich gating model revealed that this domain functions to both promote voltage sensor activation and also reduce intrinsic gating. Free energy calculations suggest that the dual effects of the β1 Y74 and S104–I106 domains can be largely accounted for by a relative destabilization of channels in open states that have few voltage sensors activated. These results suggest a unique and novel mechanism for β subunit modulation of voltage-gated potassium channels wherein interactions between extracellular β subunit residues with the external portions of the gate and voltage sensor regulate channel opening

    Type 1 IP3 receptors activate BKCa channels via local molecular coupling in arterial smooth muscle cells

    Get PDF
    Plasma membrane large-conductance Ca2+-activated K+ (BKCa) channels and sarcoplasmic reticulum inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) are expressed in a wide variety of cell types, including arterial smooth muscle cells. Here, we studied BKCa channel regulation by IP3 and IP3Rs in rat and mouse cerebral artery smooth muscle cells. IP3 activated BKCa channels both in intact cells and in excised inside-out membrane patches. IP3 caused concentration-dependent BKCa channel activation with an apparent dissociation constant (Kd) of ∼4 µM at physiological voltage (−40 mV) and intracellular Ca2+ concentration ([Ca2+]i; 10 µM). IP3 also caused a leftward-shift in BKCa channel apparent Ca2+ sensitivity and reduced the Kd for free [Ca2+]i from ∼20 to 12 µM, but did not alter the slope or maximal Po. BAPTA, a fast Ca2+ buffer, or an elevation in extracellular Ca2+ concentration did not alter IP3-induced BKCa channel activation. Heparin, an IP3R inhibitor, and a monoclonal type 1 IP3R (IP3R1) antibody blocked IP3-induced BKCa channel activation. Adenophostin A, an IP3R agonist, also activated BKCa channels. IP3 activated BKCa channels in inside-out patches from wild-type (IP3R1+/+) mouse arterial smooth muscle cells, but had no effect on BKCa channels of IP3R1-deficient (IP3R1−/−) mice. Immunofluorescence resonance energy transfer microscopy indicated that IP3R1 is located in close spatial proximity to BKCa α subunits. The IP3R1 monoclonal antibody coimmunoprecipitated IP3R1 and BKCa channel α and β1 subunits from cerebral arteries. In summary, data indicate that IP3R1 activation elevates BKCa channel apparent Ca2+ sensitivity through local molecular coupling in arterial smooth muscle cells

    Spatial organization of RYRs and BK channels underlying the activation of STOCs by Ca2+ sparks in airway myocytes

    Get PDF
    Short-lived, localized Ca2+ events mediate Ca2+ signaling with high efficiency and great fidelity largely as a result of the close proximity between Ca2+-permeable ion channels and their molecular targets. However, in most cases, direct evidence of the spatial relationship between these two types of molecules is lacking, and, thus, mechanistic understanding of local Ca2+ signaling is incomplete. In this study, we use an integrated approach to tackling this issue on a prototypical local Ca2+ signaling system composed of Ca2+ sparks resulting from the opening of ryanodine receptors (RYRs) and spontaneous transient outward currents (STOCs) caused by the opening of Ca2+-activated K+ (BK) channels in airway smooth muscle. Biophysical analyses of STOCs and Ca2+ sparks acquired at 333 Hz demonstrate that these two events are associated closely in time, and approximately eight RYRs open to give rise to a Ca2+ spark, which activates ∼15 BK channels to generate a STOC at 0 mV. Dual immunocytochemistry and 3-D deconvolution at high spatial resolution reveal that both RYRs and BK channels form clusters and RYR1 and RYR2 (but not RYR3) localize near the membrane. Using the spatial relationship between RYRs and BK channels, the spatial-temporal profile of [Ca2+] resulting from Ca2+ sparks, and the kinetic model of BK channels, we estimate that an average Ca2+ spark caused by the opening of a cluster of RYR1 or RYR2 acts on BK channels from two to three clusters that are randomly distributed within an ∼600-nm radius of RYRs. With this spatial organization of RYRs and BK channels, we are able to model BK channel currents with the same salient features as those observed in STOCs across a range of physiological membrane potentials. Thus, this study provides a mechanistic understanding of the activation of STOCs by Ca2+ sparks using explicit knowledge of the spatial relationship between RYRs (the Ca2+ source) and BK channels (the Ca2+ target)

    Low-capital companies - a comparative comparison

    No full text
    corecore