3,755 research outputs found

    Principles of forensic group therapy

    Get PDF
    Long-term monitoring of distributed, multiple plots is the key to quantify macroecological patterns and changes. Here we examine the evidence for concerted changes in the structure, dynamics and composition of old-growth Amazonian forests in the late twentieth century. In the 1980s and 1990s, mature forests gained biomass and underwent accelerated growth and dynamics, all consistent with a widespread, long-acting stimulation of growth. Because growth on average exceeded mortality, intact Amazonian forests have been a carbon sink. In the late twentieth century, biomass of trees of more than 10cm diameter increased by 0.62±0.23 t C ha-1yr-1 averaged across the basin. This implies a carbon sink in Neotropical old-growth forest of at least 0.49±0.18 Pg C yr-1. If other biomass and necromass components are also increased proportionally, then the old-growth forest sink here has been 0.79±0.29 Pg C yr-1, even before allowing for any gains in soil carbon stocks. This is approximately equal to the carbon emissions to the atmosphere by Amazon deforestation. There is also evidence for recent changes in Amazon biodiversity. In the future, the growth response of remaining old-growth mature Amazon forests will saturate, and these ecosystems may switch from sink to source driven by higher respiration (temperature), higher mortality (as outputs equilibrate to the growth inputs and periodic drought) or compositional change (disturbances). Any switch from carbon sink to source would have profound implications for global climate, biodiversity and human welfare, while the documented acceleration of tree growth and mortality may already be affecting the interactions among millions of species. © 2008 The Royal Society

    Fingerprinting the impacts of global change on tropical forests

    Get PDF
    Recent observations of widespread changes in mature tropical forests such as increasing tree growth, recruitment and mortality rates and increasing above-ground biomass suggest that 'global change' agents may be causing predictable changes in tropical forests. However, consensus over both the robustness of these changes and the environmental drivers that may be causing them is yet to emerge. This paper focuses on the second part of this debate. We review (i) the evidence that the physical, chemical and biological environment that tropical trees grow in has been altered over recent decades across large areas of the tropics, and (ii) the theoretical, experimental and observational evidence regarding the most likely effects of each of these changes on tropical forests. Ten potential widespread drivers of environmental change were identified: temperature, precipitation, solar radiation, climatic extremes (including El Niño Southern Oscillation events), atmospheric CO2 concentrations, nutrient deposition, O3/acid depositions, hunting, land-use change and increasing liana numbers. We note that each of these environmental changes is expected to leave a unique 'fingerprint' in tropical forests, as drivers directly force different processes, have different distributions in space and time and may affect some forests more than others (e.g. depending on soil fertility). Thus, in the third part of the paper we present testable a priori predictions of forest responses to assist ecologists in attributing particular changes in forests to particular causes across multiple datasets. Finally, we discuss how these drivers may change in the future and the possible consequences for tropical forests

    Increasing biomass in Amazonian forest plots

    Get PDF
    A previous study by Phillips et al. of changes in the biomass of permanent sample plots in Amazonian forests was used to infer the presence of a regional carbon sink. However, these results generated a vigorous debate about sampling and methodological issues. Therefore we present a new analysis of biomass change in old-growth Amazonian forest plots using updated inventory data. We find that across 59 sites, the above-ground dry biomass in trees that are more than 10 cm in diameter (AGB) has increased since plot establishment by 1.22 ± 0.43 Mg per hectare per year (ha-1 yr-1), where 1 ha = 104 m2), or 0.98 ± 0.38 Mg ha-1 yr-1 if individual plot values are weighted by the number of hectare years of monitoring. This significant increase is neither confounded by spatial or temporal variation in wood specific gravity, nor dependent on the allometric equation used to estimate AGB. The conclusion is also robust to uncertainty about diameter measurements for problematic trees: for 34 plots in western Amazon forests a significant increase in AGB is found even with a conservative assumption of zero growth for all trees where diameter measurements were made using optical methods and/or growth rates needed to be estimated following fieldwork. Overall, our results suggest a slightly greater rate of net stand-level change than was reported by Phillips et al. Considering the spatial and temporal scale of sampling and associated studies showing increases in forest growth and stem turnover, the results presented here suggest that the total biomass of these plots has on average increased and that there has been a regional-scale carbon sink in old-growth Amazonian forests during the previous two decades

    Increasing dominance of large lianas in Amazonian forests

    Get PDF
    Ecological orthodoxy suggests that old-growth forests should be close to dynamic equilibrium, but this view has been challenged by recent findings that neotropical forests are accumulating carbon and biomass, possibly in response to the increasing atmospheric concentrations of carbon dioxide. However, it is unclear whether the recent increase in tree biomass has been accompanied by a shift in community composition. Such changes could reduce or enhance the carbon storage potential of old-growth forests in the long term. Here we show that non-fragmented Amazon forests are experiencing a concerted increase in the density, basal area and mean size of woody climbing plants (lianas). Over the last two decades of the twentieth century the dominance of large lianas relative to trees has increased by 1.7–4.6% a year. Lianas enhance tree mortality and suppress tree growth, so their rapid increase implies that the tropical terrestrial carbon sink may shut down sooner than current models suggest. Predictions of future tropical carbon fluxes will need to account for the changing composition and dynamics of supposedly undisturbed forests

    Ficus insipida subsp. insipida (Moraceae) reveals the role of ecology in the phylogeography of widespread Neotropical rain forest tree species

    Get PDF
    Aim: To examine the phylogeography of Ficus insipida subsp. insipida in order to investigate patterns of spatial genetic structure across the Neotropics and within Amazonia. Location: Neotropics. Methods: Plastid DNA (trnH-psbA; 410 individuals from 54 populations) and nuclear ribosomal internal transcribed spacer (ITS; 85 individuals from 27 populations) sequences were sampled from Mexico to Bolivia, representing the full extent of the taxon's distribution. Divergence of plastid lineages was dated using a Bayesian coalescent approach. Genetic diversity was assessed with indices of haplotype and nucleotide diversities, and genetic structure was examined using spatial analysis of molecular variance (SAMOVA) and haplotype networks. Population expansion within Amazonia was tested using neutrality and mismatch distribution tests. Results: trnH-psbA sequences yielded 19 haplotypes restricted to either Mesoamerica or Amazonia; six haplotypes were found among ITS sequences. Diversification of the plastid DNA haplotypes began c. 14.6 Ma. Haplotype diversity for trnH-psbA was higher in Amazonia. Seven genetically differentiated SAMOVA groups were described for trnH-psbA, of which two were also supported by the presence of unique ITS sequences. Population expansion was suggested for both markers for the SAMOVA group that contains most Amazonian populations. Main conclusions: Our results show marked population genetic structure in F. insipida between Mesoamerica and Amazonia, implying that the Andes and seasonally dry areas of northern South America are eco-climatic barriers to its migration. This pattern is shared with other widespread pioneer species affiliated to wet habitats, indicating that the ecological characteristics of species may impact upon large-scale phylogeography. Ficus insipida also shows genetic structure in north-western Amazonia potentially related to pre-Pleistocene historical events. In contrast, evident population expansion elsewhere in Amazonia, in particular the presence of genetically uniform populations across the south-west, indicate recent colonization. Our findings are consistent with palaeoecological data that suggest recent post-glacial expansion of Amazonian forests in the south

    Reduced Efficacy of Anti-A\u3cem\u3eβ\u3c/em\u3e Immunotherapy in a Mouse Model of Amyloid Deposition and Vascular Cognitive Impairment Comorbidity

    Get PDF
    Vascular cognitive impairment and dementia (VCID) is the second most common form of dementia behind Alzheimer\u27s disease (AD). It is estimated that 40% of AD patients also have some form of VCID. One promising therapeutic for AD is anti-Aβ immunotherapy, which uses antibodies against Aβ to clear it from the brain. While successful in clearing Aβ and improving cognition in mice, anti-Aβ immunotherapy failed to reach primary cognitive outcomes in several different clinical trials. We hypothesized that one potential reason the anti-Aβ immunotherapy clinical trials were unsuccessful was due to this high percentage of VCID comorbidity in the AD population. We used our unique model of VCID-amyloid comorbidity to test this hypothesis. We placed 9-month-old wild-type and APP/PS1 mice on either a control diet or a diet that induces hyperhomocysteinemia (HHcy). After being placed on the diet for 3 months, the mice then received intraperotineal injections of either IgG2a control or 3D6 for another 3 months. While we found that treatment of our comorbidity model with 3D6 resulted in decreased total Aβ levels, there was no cognitive benefit of the anti-Aβ immunotherapy in our AD/VCID mice. Further, microhemorrhages were increased by 3D6 in the APP/PS1/control but further increased in an additive fashion when 3D6 was administered to the APP/PS1/HHcy mice. This suggests that the use of anti-Aβ immunotherapy in patients with both AD and VCID would be ineffective on cognitive outcomes

    Forest fire history in Amazonia inferred from intensive soil charcoal sampling and radiocarbon dating

    Get PDF
    This study was supported by funding from the UK Natural Environment Research Council (NERC, NE/N011570/1 and NE/R017980/1) and a radiocarbon dating allocation (allocation 2122.0818) from the NERC-funded NEIF Radiocarbon Laboratory.Fire has a historical role in tropical forests related to past climate and ancient land use spanning the Holocene; however, it is unclear from charcoal records how fire varied at different spatiotemporal scales and what sampling strategies are required to determine fire history and their effects. We evaluated fire variation in structurally intact, terra-firme Amazon forests, by intensive soil charcoal sampling from three replicate soil pits in sites in Guyana and northern and southern Peru. We used radiocarbon (14C) measurement to assess (1) locally, how the timing of fires represented in our sample varied across the surface of forest plots and with soil depth, (2) basin-wide, how the age of fires varies across climate and environmental gradients, and (3) how many samples are appropriate when applying the 14C approach to assess the date of last fire. Considering all 14C dates (n = 33), the most recent fires occurred at a similar time at each of the three sites (median ages: 728–851 cal years BP), indicating that in terms of fire disturbance at least, these forests could be considered old-growth. The number of unique fire events ranged from 1 to 4 per pit and from 4 to 6 per site. Based upon our sampling strategy, the N-Peru site—with the highest annual precipitation—had the most fire events. Median fire return intervals varied from 455 to 2,950 cal years BP among sites. Based on available dates, at least three samples (1 from the top of each of 3 pits) are required for the sampling to have a reasonable likelihood of capturing the most recent fire for forests with no history of a recent fire. The maximum fire return interval for two sites was shorter than the time since the last fire, suggesting that over the past ∼800 years these forests have undergone a longer fire-free period than the past 2,000–3,500 years. Our analysis from terra-firme forest soils helps to improve understanding of changes in fire regime, information necessary to evaluate post-fire legacies on modern vegetation and soil and to calibrate models to predict forest response to fire under climate change.Publisher PDFPeer reviewe

    Costs of reproduction and carry-over effects in breeding albatrosses

    Get PDF
    We investigated the physiology of two closely related albatross species relative to their breeding strategy: black-browed albatrosses (Thalassarche melanophris) breed annually, while grey-headed albatrosses (T. chrysostoma) breed biennially. From observations of breeding fate and blood samples collected at the end of breeding in one season and feather corticosterone levels (fCort) sampled at the beginning of the next breeding season, we found that in both species some post-breeding physiological parameters differed according to breeding outcome (successful, failed, deferred). Correlations between post-breeding physiology and fCort, and links to future breeding decisions, were examined. In black-browed albatrosses, post-breeding physiology and fCort were not significantly correlated, but fCort independently predicted breeding decision the next year, which we interpret as a possible migratory carry-over effect. In grey-headed albatrosses, post-breeding triglyceride levels were negatively correlated with fCort, but only in females, which we interpret as a potential cost of reproduction. However, this potential cost did not carry-over to future breeding in the grey-headed albatrosses. None of the variables predicted future breeding decisions. We suggest that biennial breeding in the grey-headed albatrosses may have evolved as a strategy to buffer against the apparent susceptibility of females to negative physiological costs of reproduction. Future studies are needed to confirm this
    corecore