988 research outputs found

    An absorption event in the X-ray lightcurve of NGC 3227

    Full text link
    We have monitored the Seyfert galaxy NGC 3227 with the Rossi X-ray Timing Explorer (RXTE) since January 1999. During late 2000 and early 2001 we observed an unusual hardening of the 2-10 keV X-ray spectrum which lasted several months. The spectral hardening was not accompanied by any correlated variation in flux above 8 keV. We therefore interpret the spectral change as transient absorption by a gas cloud of column density 2.6 10^23 cm^-2 crossing the line of sight to the X-ray source. A spectrum obtained by XMM-Newton during an early phase of the hard-spectrum event confirms the obscuration model and shows that the absorbing cloud is only weakly ionised. The XMM-Newton spectrum also shows that ~10% of the X-ray flux is not obscured, but this unabsorbed component is not significantly variable and may be scattered radiation from a large-scale scattering medium. Applying the spectral constraints on cloud ionisation parameter and assuming that the cloud follows a Keplerian orbit, we constrain the location of the cloud to be R~10-100 light-days from the central X-ray source, and its density to be n_H~10^8cm^-3, implying that we have witnessed the eclipse of the X-ray source by a broad line region cloud.Comment: 5 pages, 6 figures, accepted for publication in MNRAS letter

    Simultaneous Ultraviolet and X-ray Observations of the Seyfert Galaxy NGC 4151. II. Physical Conditions in the UV Absorbers

    Get PDF
    We present a detailed analysis of the intrinsic absorption in the Seyfert 1 galaxy NGC 4151 using UV spectra from the HST/STIS and FUSE, obtained 2002 May as part of a set of contemporaneous observations that included Chandra/HETGS spectra. In our analysis of the Chandra spectra, we determined that the soft X-ray absorber was the source of the saturated UV lines of O VI, C IV, and N V associated with the absorption feature at a radial velocity of ~ -500 km/sec, which we referred to as component D+E. In the present work, we have derived tighter constrains on the the line-of-sight covering factors, densities, and radial distances of the absorbers. We find that the Equivalent Widths (EWs) of the low-ionization lines associated with D+E varied over the period from 1999 July to 2002 May. The drop in the EWs of these lines between 2001 April and 2002 May are suggestive of bulk motion of gas out of our line-of-sight. If these lines from these two epochs arose in the same sub-component, the transverse velocity of the gas is ~ 2100 km/sec. Transverse velocities of this order are consistent with an origin in a rotating disk, at the roughly radial distance we derived for D+E.Comment: 51 pages, including 12 figures. Accepted for publication in ApJ Supplement

    A Spectroscopic and Photometric Study of Short-Timescale Variability in NGC5548

    Get PDF
    Results of a ground-based optical monitoring campaign on NGC5548 in June 1998 are presented. The broad-band fluxes (U,B,V), and the spectrophotometric optical continuum flux F_lambda(5100 A) monotonically decreased in flux while the broad-band R and I fluxes and the integrated emission-line fluxes of Halpha and Hbeta remained constant to within 5%. On June 22, a short continuum flare was detected in the broad band fluxes. It had an amplitude of about ~18% and it lasted only ~90 min. The broad band fluxes and the optical continuum F_lambda(5100 A) appear to vary simultaneously with the EUV variations. No reliable delay was detected for the broad optical emission lines in response to the EUVE variations. Narrow Hbeta emission features predicted as a signature of an accretion disk were not detected during this campaign. However, there is marginal evidence for a faint feature at lambda = 4962 A with FWHM=~6 A redshifted by Delta v = 1100 km/s with respect to Hbeta_narrow.Comment: 12 pages, 7 figures, accepted for publishing in A&

    Intensive HST, RXTE and ASCA Monitoring of NGC 3516: Evidence Against Thermal Reprocessing

    Full text link
    During 1998 April 13-16, NGC 3516 was monitored almost continuously with HST for 10.3 hr in the UV and 2.8 d in the optical, and simultaneous RXTE and ASCA monitoring covered the same period. The X-rays were strongly variable with the soft (0.5-2 keV) showing stronger variations (~65% peak-to-peak) than the hard (2-10 keV; ~50% peak-to-peak). The optical continuum showed much smaller but highly significant variations: a slow ~2.5% rise followed by a faster ~3.5% decline. The short UV observation did not show significant variability. The soft and hard X-ray light curves were strongly correlated with no significant lag. Likewise, the optical continuum bands (3590 and 5510 A) were also strongly correlated with no measurable lag above limits of <0.15 d. However no significant correlation or simple relationship could be found for the optical and X-ray light curves. These results appear difficult to reconcile with previous reports of correlations between X-ray and optical variations and of measurable lags within the optical band for some other Seyfert 1s. These results also present serious problems for "reprocessing" models in which the X-ray source heats a stratified accretion disk which then reemits in the optical/ultraviolet: the synchronous variations within the optical would suggest that the emitting region is <0.3 lt-d across, while the lack of correlation between X-ray and optical variations would indicate, in the context of this model, that any reprocessing region must be >1 lt-d in size. It may be possible to resolve this conflict by invoking anisotropic emission or special geometry, but the most natural explanation appears to be that the bulk of the optical luminosity is generated by some other mechanism than reprocessing.Comment: 23 pages including 6 figures, accepted for publication in Ap

    New constraints on the continuum-emission mechanism of AGN: Intensive monitoring of NGC 7469 in the X-ray and ultraviolet

    Get PDF
    We have undertaken near-continuous monitoring of the Seyfert 1 galaxy NGC 7469 in the X-ray with RXTE over a ~30d baseline. The source shows strong variability with a root-mean-square (rms) amplitude of ~16 per cent, and peak-to-peak variations of a factor of order 2. Simultaneous data over this period were obtained in the ultraviolet (UV) using IUE, making this the most intensive X-ray UV/X-ray variability campaign performed for any active galaxy. Comparison of the continuum light curves reveals very similar amplitudes of variability, but different variability characteristics, with the X-rays showing much more rapid variations. The data are not strongly correlated at zero lag. The largest absolute value of the correlation coefficient occurs for an anticorrelation between the two bands, with the X-ray variations leading the UV by ~4d. The largest positive correlation is for the ultraviolet to lead the X-rays by ~4d. Neither option appears to be compatible with any simple interband transfer function. The peak positive correlation at ~4d occurs because the more prominent peaks in the UV light curve appear to lead those in the X-rays by this amount. However, the minima of the light curves are near-simultaneous. These observations provide new constraints on theoretical models of the central regions of active galactic nuclei. Models in which the observed UV emission is produced solely by re-radiation of absorber X-rays are ruled out by our data, as are those in which the X-rays are produced solely by Compton upscattering of the observed UV component by a constant distribution of particles.Comment: 33 pages, 8 figures. LaTeX with encapsulated postscript. To appear in the Astrophysical Journal. Also available via http://lheawww.gsfc.nasa.gov/users/nandra/pubs/7469/abstract.htm

    Multiwavelength Monitoring of the Narrow-Line Seyfert 1 Galaxy Akn 564. II. Ultraviolet Continuum and Emission-line Variability

    Get PDF
    We present results of an intensive two-month campaign of approximately daily spectrophotometric monitoring of the narrow-line Seyfert 1 galaxy Akn 564 with HST. The fractional variability amplitude of the continuum variations between 1365-3000 A is ~6%, about a factor 3 less than that found in typical Seyfert 1 galaxies over a similar period of time. However, large amplitude, short time-scale flaring behavior is evident, with trough-to-peak flux changes of about 18% in approximately 3 days. We present evidence for wavelength-dependent continuum time delays, with the variations at 3000 A lagging behind those at 1365 A by about 1 day. These delays may be interpreted as evidence for a stratified continuum reprocessing region, possibly an accretion-disk structure. The Lyman-alpha 1216 emission-line exhibits flux variations of about 1% amplitude.Comment: 27 pages, 14 figures. Accepted by Astrophysical Journa

    Multiwavelength Monitoring of the Narrow-Line Seyfert 1 Galaxy Akn 564. I. ASCA Observations and the Variability of the X-ray Spectral Components

    Full text link
    We present a 35 day ASCA observation of the NLS1 Akn 564, which was part of a multiwavelength AGN Watch monitoring campaign. Akn 564 shows a photon index varying across the range 2.45--2.72. The presence of the soft hump component below 1 keV, previously detected in ASCA data, is confirmed. Time-resolved spectroscopy with ~daily sampling reveals a distinction in the variability of the soft hump and power-law components over a timescale of weeks, with the hump varying by a factor of 6 across the 35-day observation compared to a factor 4 in the power-law. Flux variations in the power-law component are measured down to a timescale of ~1000s and accompanying spectral variability suggests the soft hump is not well-correlated with the power-law on such short timescales. We detect Fe Ka and a blend of Fe Kb plus Ni Ka, indicating an origin in highly ionized gas. Variability measurements constrain the bulk of the Fe Ka to originate within a light week of the nucleus. The large EW of the emission lines may be due to high metallicity in NLS1s, supporting some evolutionary models for AGN.Comment: 41 pages, 15 figures. Accepted for publication in the Astrophysical Journal (v3 has final fixes for publication

    Confirmation of a correlation between the X-ray luminosity and spectral slope of AGNs in the Chandra Deep Fields

    Full text link
    We present results from a statistical analysis of 173 bright radio-quiet AGNs selected from the Chandra Deep Field-North and Chandra Deep Field-South surveys (hereafter, CDFs) in the redshift range of 0.1 < z < 4. We find that the X-ray power-law photon index (Gamma) of radio-quiet AGNs is correlated with their 2-10 keV rest-frame X-ray luminosity (L_X) at the > 99.5 percent confidence level in two redshift bins, 0.3 < z < 0.96, and 1.5 < z < 3.3 and is slightly less significant in the redshift bin 0.96 < z < 1.5. We investigate the redshift evolution of the correlation between the power-law photon index and the hard X-ray luminosity and find that the slope and offset of a linear fit to the correlation change significantly (at the > 99.9 percent confidence level) between redshift bins of 0.3 < z < 0.96 and 1.5 < z < 3.3. We explore physical scenarios explaining the origin of this correlation and its possible evolution with redshift in the context of steady corona models focusing on its dependency on variations of the properties of the hot corona with redshift.Comment: Comments: 20 pages, includes 17 figures, Accepted for publication in A
    • …
    corecore