530 research outputs found

    Magnetic Bearings at Draper Laboratory

    Get PDF
    Magnetic bearings, unlike traditional mechanical bearings, consist of a series of components mated together to form a stabilized system. The correct design of the actuator and sensor will provide a cost effective device with low power requirements. The proper choice of a control system utilizes the variables necessary to control the system in an efficient manner. The specific application will determine the optimum design of the magnetic bearing system including the touch down bearing. Draper for the past 30 years has been a leader in all these fields. This paper summarizes the results carried out at Draper in the field of magnetic bearing development. A 3-D radial magnetic bearing is detailed in this paper. Data obtained from recently completed projects using this design are included. One project was a high radial load (1000 pound) application. The second was a high speed (35,000 rpm), low loss flywheel application. The development of a low loss axial magnetic bearing is also included in this paper

    Small Business Employees’ Intention to Learn: Establishing Research Directions

    Get PDF
    The following paper overviews the importance of learning in small business and entrepreneurship. It examines the notions of behavioral intentions and behavior in particular with respect to small business and entrepreneurship and intention to learn. The paper also examines the roles that learning affordances, engagement, and self-directed-learning style play in the links between employee intentions to learn and their learning behavior. In total 15 propositions for future research are identified and described and a research agenda is briefly discussed

    The alpha subunit of the Saccharomyces cerevisiae oligosaccharyltransferase complex is essential for vegetative growth of yeast and is homologous to mammalian ribophorin I

    Get PDF
    Oligosaccharyltransferase mediates the transfer of a preassembled high mannose oligosaccharide from a lipid-linked oligosaccharide donor to consensus glycosylation acceptor sites in newly synthesized proteins in the lumen of the rough endoplasmic reticulum. The Saccharomyces cerevisiae oligosaccharyltransferase is an oligomeric complex composed of six nonidentical subunits (alpha-zeta), two of which are glycoproteins (alpha and beta). The beta and delta subunits of the oligosaccharyltransferase are encoded by the WBP1 and SWP1 genes. Here we describe the functional characterization of the OST1 gene that encodes the alpha subunit of the oligosaccharyltransferase. Protein sequence analysis revealed a significant sequence identity between the Saccharomyces cerevisiae Ost1 protein and ribophorin I, a previously identified subunit of the mammalian oligosaccharyltransferase. A disruption of the OST1 locus was not tolerated in haploid yeast showing that expression of the Ost1 protein is essential for vegetative growth of yeast. An analysis of a series of conditional ost1 mutants demonstrated that defects in the Ost1 protein cause pleiotropic underglycosylation of soluble and membrane-bound glycoproteins at both the permissive and restrictive growth temperatures. Microsomal membranes isolated from ost1 mutant yeast showed marked reductions in the in vitro transfer of high mannose oligosaccharide from exogenous lipid-linked oligosaccharide to a glycosylation site acceptor tripeptide. Microsomal membranes isolated from the ost1 mutants contained elevated amounts of the Kar2 stress-response protein

    How can pharmacists develop patient-pharmacist communication skills? : a realist review protocol

    Get PDF
    Background: Good patient-pharmacist communication improves health outcomes. There is, however, room for improving pharmacists’ communication skills. These develop through complex interactions during undergraduate pharmacy education, practice-based learning and continuing professional development. Research is needed to determine how best to approach teaching patient-pharmacist communication. Methods: The aim of the research is to understand how educational interventions develop patient-pharmacist interpersonal communication skills produce their effects. A realist review approach will be used to synthesise the literature to make sense of the complexities of educational interventions. Our review will iteratively progress through the various stages of clarifying scope, locating existing theories, searching for evidence, appraisal of papers, data extraction and synthesis. A scoping review revealed a number of substantive theories, which will be used to build an initial programme theory. This will be explored through available published evidence, which we will find by searching databases such as Medline, EMBASE, PsychInfo, ERIC, Scopus and Web of Science. Judgements will be made on the relevance and rigour of the retrieved literature and will be taken into consideration during analysis and synthesis. Synthesis, testing and refinement of the theories will describe and explain the links between contexts, mechanisms and outcomes of educational interventions for communication development in pharmacy. Discussion: The realist review will provide an analysis of what works when, for whom, how and why, for educational interventions for interpersonal patient-pharmacist communication development. We will also explore barriers to successful communications training and acknowledge any limitations. Ultimately, we plan to provide pharmacy educators with evidence for how best to incorporate educational interventions for communications skills development into pharmacy curricula and for life-long learning opportunities for pharmacists

    Hybrid Modelling for Stroke Care: Review and suggestions of new approaches for risk assessment and simulation of scenarios

    Get PDF
    Stroke is an example of a complex and multi-factorial disease involving multiple organs, timescales, and disease mechanisms. To deal with this complexity, and to realize Precision Medicine of stroke, mathematical models are needed. Such approaches include: 1) machine learning, 2) bioinformatic network models, and 3) mechanistic models. Since these three approaches have complementary strengths and weaknesses, a hybrid modelling approach combining them would be the most beneficial. However, no concrete approach ready to be implemented for a specific disease has been presented to date. In this paper, we both review the strengths and weaknesses of the three approaches, and propose a roadmap for hybrid modelling in the case of stroke care. We focus on two main tasks needed for the clinical setting: a) For stroke risk calculation, we propose a new two-step approach, where non-linear mixed effects models and bioinformatic network models yield biomarkers which are used as input to a machine learning model and b) For simulation of care scenarios, we propose a new four-step approach, which revolves around iterations between simulations of the mechanistic models and imputations of non-modelled or non-measured variables. We illustrate and discuss the different approaches in the context of Precision Medicine for stroke

    Spatially resolved texture analysis of Napoleonic War era copper bolts

    Get PDF
    The spatial resolution achievable by a time-of-flight neutron strain scanner has been harnessed using a new data analysis methodology (NyRTex) to determine, nondestructively, the spatial variation of crystallographic texture in objects of cultural heritage. Previous studies on the crystallographic texture at the centre of three Napoleonic War era copper bolts, which demonstrated the value of this technique in differentiating between the different production processes of the different types of bolts, were extended to four copper bolts from the wrecks of HMS Impregnable (completed 1786), HMS Amethyst (1799), HMS Pomone (1805) and HMS Maeander (1840) along with a cylindrical `segment' of a further incomplete bolt from HMS Pomone. These included bolts with works stamps, allowing comparison with documentary accounts of the manufacturing processes used, and the results demonstrated unequivocally that bolts with a `Westwood and Collins' patent stamp were made using the Collins rather than the Westwood process. In some bolts there was a pronounced variation in texture across the cross section. In some cases this is consistent with what is known of the types of hot and cold working used, but the results from the latest study might also suggest that, even in the mature phase of this technology, some hand finishing was sometimes necessary. This examination of bolts from a wider range of dates is an important step in increasing our understanding of the introduction and evolution of copper fastenings in Royal Navy warships

    Towards Intense Ultra-Broadband High Repetition Rate Terahertz Sources Based on Organic Crystals [Invited]

    Full text link
    Increasing the average power of broadband, few-cycle terahertz (THz) sources is currently a topic of intense investigation, fueled by recent immense progress in high average power femtosecond laser driving sources at 1030 nm. However, many crucial applications would benefit not only from an increase in average power, but also from ultra-broad bandwidth, while maintaining high dynamic range at these frequencies. This calls for the challenging combination of high repetition rates and high average power simultaneously. Here, we discuss the recent progress in the promising approach enabled by organic crystals for THz-generation. Specifically, this review article discusses advances with the most commonly used organic crystals BNA, DAST, DSTMS, OH1 and HMQ-TMS. We place special emphasis on nonlinear and thermal properties and discuss future directions for this field
    corecore