

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Genetic relatedness through the lens of tree sequences

Citation for published version:

Lehmann, B, Gorjanc, G, Kelleher, J, Ralph, PL & Tsambos, G 2022, 'Genetic relatedness through the lens of tree sequences', Probabilistic Modelling in Genomics 2022, Oxford, United Kingdom, 28/03/22 - 30/03/22.

Link: Link to publication record in Edinburgh Research Explorer

Document Version: Publisher's PDF, also known as Version of record

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The University of Édinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Genetic relatedness through the lens of tree sequences

Brieuc Lehmann¹, Gregor Gorjanc², Jerome Kelleher³, Peter Ralph⁴, Georgia Tsambos⁵

1. University College London, 2. University of Edinburgh, 3. University of Oxford, 4. University of Oregon, 5. University of Melbourne

The many facets of genetic relatedness

Relatedness has been characterised in many different ways since the seminal paper by Sewall Wright on 'Coefficients of inbreeding and relationship' 100 years ago. In general, genetic relatedness refers to some notion of similarity between individuals, where similarity can be defined according to pedigree, genotype, or genealogy. See [1] for a great review.

Pedigree-based

<u>Coancestry</u>: $\theta(B, C) = P(allele drawn at random is IBD in B and C)$

$$\Theta(B,C) = \sum_{A} \frac{1+f_A}{2^{g_A+1}}, \quad \begin{array}{c} f_A: \text{ coancestry of A's parents} \\ g_A: \text{ length of lineage path B} - \end{array}$$

N.B. in expectation only & requires knowledge of the pedigree!

Genotype-based

Similarity \approx P(allele drawn at random matches in B and C). Different versions with centring/standardising. Let $X \in \{0,1,2\}^{n \times p}$ be the genotype matrix. E.g. coefficient'

$$K_{as}(B,C) = \frac{1}{2} + \frac{1}{2m}(X_B - 1)^T(X_C - 1) \quad \text{`allele-sharing of} \\ K_{c\alpha}(B,C) = \frac{1}{m}(X_B - 2p_j)^T D_{\alpha}(X_C - 2p_j), \quad diag(D_{\alpha})_j = (2)$$

N.B. sensitive to SNPs selected and choice of reference population

Genealogy-based

Similarity = f(Time to Most Recent Common Ancestor across genome)

N.B. based on the Ancestral Recombination Graph... enter tree sequences!

What has genetic relatedness ever done for us?

Directly or indirectly, genetic relatedness plays a key role in a number of common population genetics analyses. Let Σ be the genetic relatedness matrix (GRM).

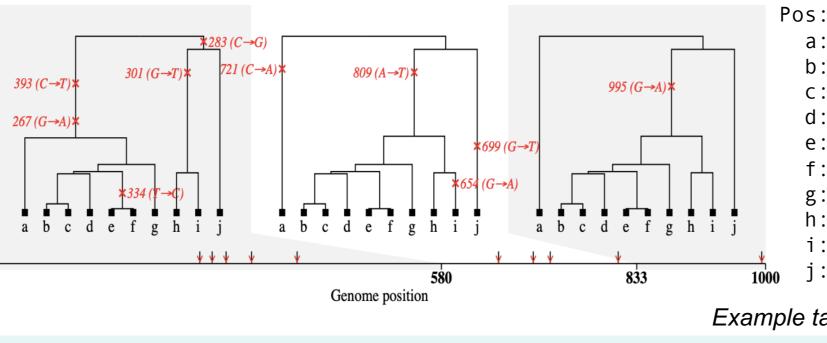
- Principal components analysis (PCA) Based on an eigendecomposition of Σ . Used to identify structure in the distribution of genetic variation – see example over on the right \rightarrow .
- Phenotype prediction Linear mixed model approaches (e.g., BLUP, "Bayesian alphabet"). For example, $Y \sim N(Z\beta_0, \Sigma\sigma_g^2 + \sigma_e^2)$.
- Heritability estimation As above, but interest is in estimating $h^2 = \sigma_a^2 / (\sigma_a^2 + \sigma_e^2)$.
- **Controlling for population structure in GWAS** Common methods include regressing out the first *n* principal components, or using linear mixed models (e.g., BOLT-LMM).
- Any more for anymore? We're very interested to hear any other examples of genetic relatedness being used in the wild – please get in touch!

 $\rightarrow A \rightarrow C$

 $\left(2p_j(1-p_j)\right)^{\alpha}$

What is a tree sequence?

A succinct tree sequence represents the evolutionary relationships between a set of DNA sequences. Tree sequences are essentially an encoding of Ancestral Recombination Graphs; they can be created by simulation or by inferring relationships from empirical DNA data.



Relatedness as covariance

We can use the tree sequence structure to calculate the genetic relatedness matrix Σ for a group of individuals. We can do so just as easily for branchbased or site-based genetic relatedness.

We have haploid* individuals $I_{1:N}$ with traits $Y_{1:N} = g_{1:N} + e_{1:N}$ where g_i is the genetic value, with population mean $\bar{g} = \frac{1}{N} \sum g_i$. Let $g_i^* := g_i - \bar{g}$.

	U	IN - C
Site-based		
Each (biallelic) site <i>j</i> is associated with an effect Z_j . Let $E[Z_j] = 0$ and $Var(Z_j) = 1$.		Each bra effect Z_b . $Var(Z_b)$ =
Let $X_{ij} = 1$ iff individual <i>i</i> has a mutation at site <i>j</i> . $X_{ij} = 0$ otherwise		Let <i>T_{ib}</i> = individua
The genetic value of a trait is the su of the site effects carried by an individual: $g_i = \sum_{j:G_{ij}=1} Z_j$		The gene of the bra individua
Genetic relatedness between individue the centered generation $\Sigma_{ij} = \Sigma_{ij}$	netio	
Let $m(B, C)$ be the no. of pairwise simulation matches between B and C .	ite	Let A(B, C) branches
Let U and V be individuals selec	ted	uniformly
Then, $\Sigma_{BC} = E[m(B,C) - m(B,V) - m(C,U) + m(U,V)]$		Then, X
'Number of pairwise allelic matches relative to the rest of the sample.'		'Total are pair relati
This is implemented in takit through	ah	+

This is implemented in tskit through ts.genetic_relatedness(). See also [2] for some closely related (pun intended) work. *Extends straightforwardly to other ploidy levels!

•	267	283	301	334	393	654	699	721	809	995	
•	А	С	G	Т	Т	G	G	А	А	G	
•	А	С	G	Т	Т	G	G	С	Т	А	
•	А	С	G	Т	Т	G	G	С	Т	А	
•	А	С	G	Т	Т	G	G	С	Т	А	
•	А	С	G	С	Т	G	G	С	Т	А	
•	А	С	G	С	Т	G	G	С	Т	А	
•	А	С	G	Т	Т	G	G	С	Т	А	
•	G	G	Т	Т	С	G	G	С	Т	А	
•	G	G	Т	Т	С	А	G	С	Т	А	
•	G	G	G	Т	С	G	Т	С	А	G	

Example taken from https://tskit.dev/tutorials/what is.htm

Branch-based

anch b is associated with an . Let $E[Z_h] = 0$ and $= a_b$ ('area' of branch b)

1 iff branch *b* is ancestral to al *i*. $T_{ib} = 0$ otherwise.

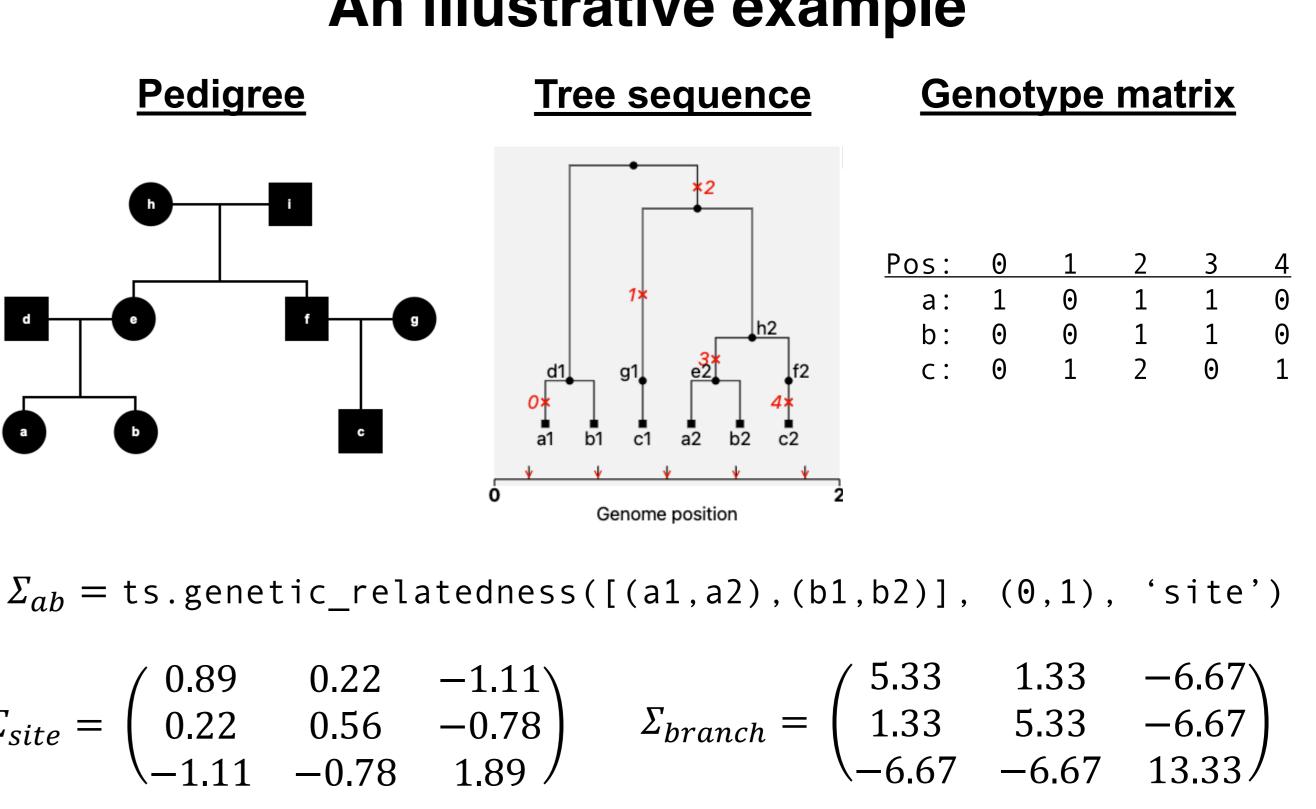
etic value of a trait is the sum anch effects carried by an **I**: $g_i = \sum_{b:T_{ib}=1} Z_b$

i is the covariance between g_i^* and g_i^* .

C) be the total area of s ancestral to both B and C. y at random from I_1, \ldots, I_N .

 $\Sigma_{ii} = E[A(B,C) - A(B,V) -$ A(C,U) + A(U,V)]

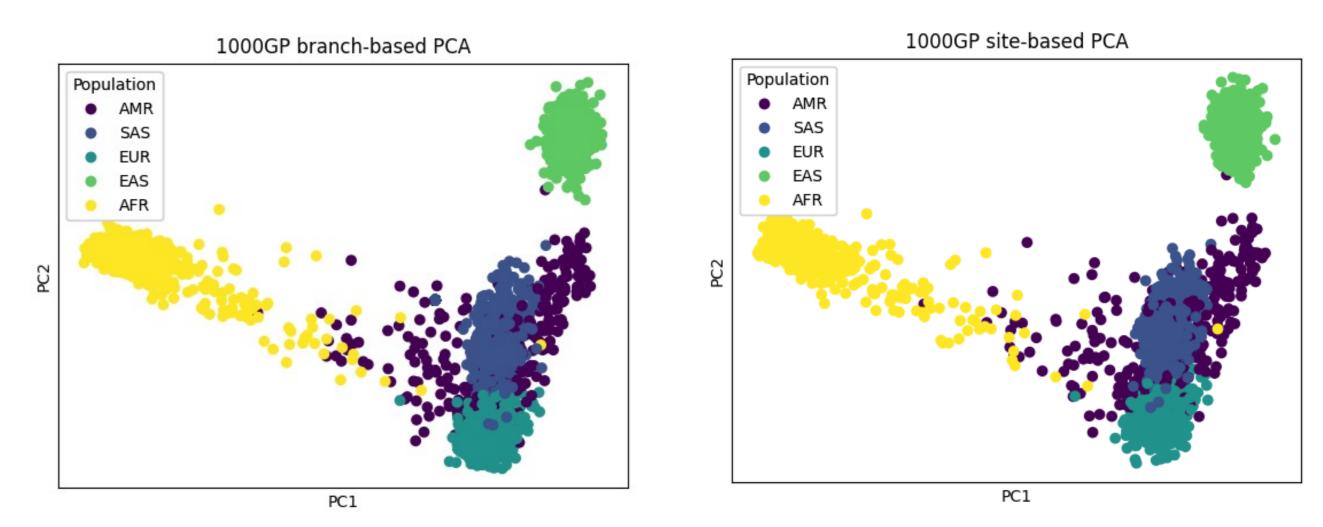
ea of branches ancestral to tive to the rest of sample.'



	(0.89	0.22	-1.11
$\Sigma_{site} =$	0.89	0.56	-0.78
	\-1.11	-0.78	1.89 /

PCA on tree sequences

We study the inferred tree sequence based on 3,601 modern and 8 ancient human genomes [3]. In python, we can define a linear operator based on ts.genetic_relatedness(), and use common linear algebra libraries (scipy) to perform site- and branch-based principal components analyses.



We're actively working on efficient genetic relatedness computations in tskit – stay tuned!

[1] Speed, D., Balding, D. Relatedness in the post-genomic era: is it still useful?. *Nat Rev* Genet 16, 33–44 (2015). doi.org/10.1038/nrg3821 [2] Fan et al. A genealogical estimate of genetic relationships. *bioRxiv (2021)* doi.org/10.1101/2021.08.18.456747 [3] A.W. Wohns et al. A unified genealogy of modern and ancient genomes. Science **375**, 6583 (2022). doi.org/10.1126/science.abi8264

ProbGen 2022

An illustrative example

References

