383 research outputs found

    Ethical Concerns When Supervising Spanish-English Bilingual Counselors: Suggestions for Practice

    Get PDF
    To best serve Latino clients, counselor educators and supervisors must ensure counselors receives adequate training and practice in cultural competence. 5is article presents an overview of the needs of Spanish English bilingual (SEB) counselors, a case study that illustrates SEB counselors common concerns, and addressed three fundamental ethical questions: (a) Should supervisors be pro6cient in the language their supervisees are serving clients? (b) What constitutes su4cient cultural competence when supervisors oversee service to clients who are culturally diverse and do not speak English? (c) How can supervisors and counselor educators best support supervisees linguistically and culturally nuanced practice

    A phenomenological investigation of Spanish-English bilingual supervisees’ experience in clinical supervision

    Get PDF
    With a growing number of American households speaking languages other than English, the counseling profession must meet the counseling needs of non-English speaking clients. In turn, clinical supervisors and counselor educators must meet the needs of bilingual counselors. This existential phenomenological study examines the clinical supervision experience of Spanish-English bilingual supervisees. Participants' responses highlighted the compatibility or incompatibility of supervisor-supervisee knowledge and skills, the resilience and resourcefulness of Spanish-English bilingual supervisees, and the diversity of the Latino population. Overall, participants expressed the overwhelming desire to have a clinical supervisor that possessed cultural competence. The majority of participants also expressed interest in having a Spanish-English bilingual supervisor, although this proficiency was considered a luxury. Further research is needed to better understand the needs of Spanish-English bilingual supervisees

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Control of interjoint coordination during the swing phase of normal gait at different speeds

    Get PDF
    BACKGROUND: It has been suggested that the control of unconstrained movements is simplified via the imposition of a kinetic constraint that produces dynamic torques at each moving joint such that they are a linear function of a single motor command. The linear relationship between dynamic torques at each joint has been demonstrated for multijoint upper limb movements. The purpose of the current study was to test the applicability of such a control scheme to the unconstrained portion of the gait cycle – the swing phase. METHODS: Twenty-eight neurologically normal individuals walked along a track at three different speeds. Angular displacements and dynamic torques produced at each of the three lower limb joints (hip, knee and ankle) were calculated from segmental position data recorded during each trial. We employed principal component (PC) analysis to determine (1) the similarity of kinematic and kinetic time series at the ankle, knee and hip during the swing phase of gait, and (2) the effect of walking speed on the range of joint displacement and torque. RESULTS: The angular displacements of the three joints were accounted for by two PCs during the swing phase (Variance accounted for – PC1: 75.1 ± 1.4%, PC2: 23.2 ± 1.3%), whereas the dynamic joint torques were described by a single PC (Variance accounted for – PC1: 93.8 ± 0.9%). Increases in walking speed were associated with increases in the range of motion and magnitude of torque at each joint although the ratio describing the relative magnitude of torque at each joint remained constant. CONCLUSION: Our results support the idea that the control of leg swing during gait is simplified in two ways: (1) the pattern of dynamic torque at each lower limb joint is produced by appropriately scaling a single motor command and (2) the magnitude of dynamic torque at all three joints can be specified with knowledge of the magnitude of torque at a single joint. Walking speed could therefore be altered by modifying a single value related to the magnitude of torque at one joint

    Phospho-Tau Protein Expression in the Cell Cycle of SH-SY5Y Neuroblastoma Cells : A Morphological Study

    Get PDF
    ACKNOWLEDGMENTS Authors want to express their gratitude to Dr. P. Davies (Albert Einstein College of Medicine, Bronx, NY, USA); Lester I. Binder † (North Western, Chicago, IL, USA) for the generous gift of mAbs (TG-3, Alz-50) and (Tau-1, Tau-5, Tau-7), respectively; Tec. Amparo Viramontes Pintos for the handling of the brain tissue; M. en C. Samadhi Moreno-Campuzano for her technical assistance; M en C.J. Iván Gálvan for his support in confocal microscopy, and the confocal microscopy unit of Laboratorio Nacional de Servicios Experimentales (LaNSE), CINVESTAV. We also want to express our gratitude to the Mexican families who donated brains of loved ones affected with Alzheimer’s disease, and made our research possible. This work is dedicated to the memory of Professor Dr. José Raúl Mena López †. This work was financially supported by CONACyT grants, No. 142293 (to R.M.), 266492 (I.V-F), 239516 (J.S) and the Mancera-Reséndiz family.Peer reviewedPostprin

    Biochemical characterization and low-resolution SAXS shape of a novel GH11 exo-1,4-β-xylanase identified in a microbial consortium

    Get PDF
    Biotechnologies that aim to produce renewable fuels, chemicals, and bioproducts from residual ligno(hemi)cellulosic biomass mostly rely on enzymatic depolymerization of plant cell walls (PCW). This process requires an arsenal of diverse enzymes, including xylanases, which synergistically act on the hemicellulose, reducing the long and complex xylan chains to oligomers and simple sugars. Thus, xylanases play a crucial role in PCW depolymerization. Until recently, the largest xylanase family, glycoside hydrolase family 11 (GH11) has been exclusively represented by endo-catalytic β-1,4- and β-1,3-xylanases. Analysis of a metatranscriptome library from a microbial lignocellulose community resulted in the identification of an unusual exo-acting GH11 β-1,4-xylanase (MetXyn11). Detailed characterization has been performed on recombinant MetXyn11 including determination of its low-resolution small angle Xray scattering (SAXS) molecular envelope in solution. Our results reveal that MetXyn11 is a monomeric globular enzyme that liberates xylobiose from heteroxylans as the only product. MetXyn11 has an optimal activity in a pH range from 6 to 9 and an optimal temperature of 50 oC. The enzyme maintained above 65% of its original activity in the pH range 5 to 6 after being incubated for 72 h at 50 oC. Addition of the enzyme to a commercial enzymatic cocktail (CelicCtec3) promoted a significant increase of enzymatic hydrolysis yields of hydrothermally pretreated sugarcane bagasse (16% after 24 h of hydrolysis)

    Atlas of the clinical genetics of human dilated cardiomyopathy

    Get PDF
    [Abstract] Aim. Numerous genes are known to cause dilated cardiomyopathy (DCM). However, until now technological limitations have hindered elucidation of the contribution of all clinically relevant disease genes to DCM phenotypes in larger cohorts. We now utilized next-generation sequencing to overcome these limitations and screened all DCM disease genes in a large cohort. Methods and results. In this multi-centre, multi-national study, we have enrolled 639 patients with sporadic or familial DCM. To all samples, we applied a standardized protocol for ultra-high coverage next-generation sequencing of 84 genes, leading to 99.1% coverage of the target region with at least 50-fold and a mean read depth of 2415. In this well characterized cohort, we find the highest number of known cardiomyopathy mutations in plakophilin-2, myosin-binding protein C-3, and desmoplakin. When we include yet unknown but predicted disease variants, we find titin, plakophilin-2, myosin-binding protein-C 3, desmoplakin, ryanodine receptor 2, desmocollin-2, desmoglein-2, and SCN5A variants among the most commonly mutated genes. The overlap between DCM, hypertrophic cardiomyopathy (HCM), and channelopathy causing mutations is considerably high. Of note, we find that >38% of patients have compound or combined mutations and 12.8% have three or even more mutations. When comparing patients recruited in the eight participating European countries we find remarkably little differences in mutation frequencies and affected genes. Conclusion. This is to our knowledge, the first study that comprehensively investigated the genetics of DCM in a large-scale cohort and across a broad gene panel of the known DCM genes. Our results underline the high analytical quality and feasibility of Next-Generation Sequencing in clinical genetic diagnostics and provide a sound database of the genetic causes of DCM.Hôpitaux de Paris; PHRC AOM0414

    Acute Muscular Sarcocystosis: An International Investigation Among Ill Travelers Returning From Tioman Island, Malaysia, 2011-2012

    Get PDF
    A large outbreak of acute muscular sarcocystosis (AMS) among international tourists who visited Tioman Island, Malaysia, is described. Clinicians evaluating travelers returning ill from Malaysia with myalgia, with or without fever, should consider AMS in their differential diagnosi

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice
    corecore