895 research outputs found

    Measurement of time-dependent CP\mathcal{CP} violation in charmless B decays at LHCb

    Full text link
    In the following we present the measurements of time-dependent CP\mathcal{CP} violation in charmless B meson decays performed by LHCb analyzing the ppp-p collision data collected at a center-of-mass energy of 7 TeV during the 2010 and 2011 LHC runs. In particular we will focus on the analysis of charmless two-body B decays where the direct and mixing-induced CP asymmetry terms of the B0π+πB^{0}\to\pi^{+}\pi^{-} and Bs0K+KB_{s}^{0}\to K^{+}K^{-} decays have been measured using 0.69 fb1^{-1} of data collected during 2011. The measurement of the branching ratio of the Bs0K0Kˉ0B_{s}^{0}\to K^{*0}\bar{K}^{*0} decay, using 35 pb1^{-1} collected during 2010, is also reported. In the end we show the relative branching ratios of all the decay modes of B(s)0KSh+hB_{(s)}^{0}\to K_S h^{+}h^{\prime -} decays (where h()=π,Kh^{(\prime)}=\pi,K), measured analyzing 1 fb1^{-1} of data collected during 20 11.Comment: Proceedings of CKM 2012, the 7th International Workshop on the CKM Unitarity Triangle, University of Cincinnati, USA, 28 September - 2 October 201

    Measurements of ACP(B0K+π)A_{CP}(B^0\rightarrow K^+ \pi^-) and ACP(Bsπ+K)A_{CP}(B_s\rightarrow \pi^+ K^-) at LHCb

    Get PDF
    The LHCb experiment is designed to perform flavour physics measurements at the Large Hadron Collider. Using data collected during the 2010 run, we reconstruct a sample of Hbh+hH_b\rightarrow h^+h'^- decays, where HbH_b can be either a B0B^0 meson, a Bs0B_s^0 meson or a Λb\Lambda_b baryon, while hh and hh^\prime stand for π\pi, KK or pp. We provide preliminary values of the direct CP\mathcal{CP} asymmetries of the neutral B0B^0 and Bs0B_s^0 mesons ACP(B0K+π)=0.074±0.033(stat.)±0.008(syst.)A_{CP} (B^0\rightarrow K^+\pi^-) = -0.074 \pm 0.033\mathrm{(stat.)} \pm 0.008\mathrm{(syst.)} and ACP(Bs0π+K)=0.15±0.19(stat.)±0.02(syst.)A_{CP}(B_s^0\rightarrow\pi^+K^-)=0.15 \pm 0.19\mathrm{(stat.)} \pm 0.02\mathrm{(syst.)}

    Development of an MCP-Based Timing Layer for the LHCb ECAL Upgrade-2

    Get PDF
    The increase in instantaneous luminosity during the high-luminosity phase of the LHC represents a significant challenge for future detectors. A strategy to cope with high-pileup conditions is to add a fourth dimension to the measurements of the hits, by exploiting the time separation of the various proton–proton primary collisions. According to LHCb simulation studies, resolutions of about 10–20 picoseconds, at least an order of magnitude shorter than the average time span between primary interactions, would be greatly beneficial for the physics reach of the experiment. Microchannel plate (MCP) photomultipliers are compact devices capable of measuring the arrival time of charged particles with the required resolution. The technology of large-area picosecond photodetectors (LAPPDs) is under investigation to implement a timing layer that can be placed within a sampling calorimeter module with the purpose of measuring the arrival time of electromagnetic showers. LAPPD performances, using a Gen-I tile with a delay-line anode and a Gen-II with a capacitively coupled anode, have been measured thoroughly both with laser (wavelength of 405 nm and pulse width of 27.5 ps FWHM) and high-energy electron (1–5.8 GeV) beams. Time resolutions of the order of 30 ps for single photoelectrons and 15 ps for electromagnetic showers initiated by 5 GeV electrons, as measured at the shower maximum, are obtained

    Quantum numbers of the X(3872)X(3872) state and orbital angular momentum in its ρ0Jψ\rho^0 J\psi decay

    Get PDF
    Angular correlations in B+X(3872)K+B^+\to X(3872) K^+ decays, with X(3872)ρ0J/ψX(3872)\to \rho^0 J/\psi, ρ0π+π\rho^0\to\pi^+\pi^- and J/ψμ+μJ/\psi \to\mu^+\mu^-, are used to measure orbital angular momentum contributions and to determine the JPCJ^{PC} value of the X(3872)X(3872) meson. The data correspond to an integrated luminosity of 3.0 fb1^{-1} of proton-proton collisions collected with the LHCb detector. This determination, for the first time performed without assuming a value for the orbital angular momentum, confirms the quantum numbers to be JPC=1++J^{PC}=1^{++}. The X(3872)X(3872) is found to decay predominantly through S wave and an upper limit of 4%4\% at 95%95\% C.L. is set on the fraction of D wave.Comment: 16 pages, 4 figure

    Les droits disciplinaires des fonctions publiques : « unification », « harmonisation » ou « distanciation ». A propos de la loi du 26 avril 2016 relative à la déontologie et aux droits et obligations des fonctionnaires

    Get PDF
    The production of tt‾ , W+bb‾ and W+cc‾ is studied in the forward region of proton–proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98±0.02 fb−1 . The W bosons are reconstructed in the decays W→ℓν , where ℓ denotes muon or electron, while the b and c quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions.The production of ttt\overline{t}, W+bbW+b\overline{b} and W+ccW+c\overline{c} is studied in the forward region of proton-proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98 ±\pm 0.02 \mbox{fb}^{-1}. The WW bosons are reconstructed in the decays WνW\rightarrow\ell\nu, where \ell denotes muon or electron, while the bb and cc quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions

    Physics case for an LHCb Upgrade II - Opportunities in flavour physics, and beyond, in the HL-LHC era

    Get PDF
    The LHCb Upgrade II will fully exploit the flavour-physics opportunities of the HL-LHC, and study additional physics topics that take advantage of the forward acceptance of the LHCb spectrometer. The LHCb Upgrade I will begin operation in 2020. Consolidation will occur, and modest enhancements of the Upgrade I detector will be installed, in Long Shutdown 3 of the LHC (2025) and these are discussed here. The main Upgrade II detector will be installed in long shutdown 4 of the LHC (2030) and will build on the strengths of the current LHCb experiment and the Upgrade I. It will operate at a luminosity up to 2×1034 cm−2s−1, ten times that of the Upgrade I detector. New detector components will improve the intrinsic performance of the experiment in certain key areas. An Expression Of Interest proposing Upgrade II was submitted in February 2017. The physics case for the Upgrade II is presented here in more depth. CP-violating phases will be measured with precisions unattainable at any other envisaged facility. The experiment will probe b → sl+l−and b → dl+l− transitions in both muon and electron decays in modes not accessible at Upgrade I. Minimal flavour violation will be tested with a precision measurement of the ratio of B(B0 → μ+μ−)/B(Bs → μ+μ−). Probing charm CP violation at the 10−5 level may result in its long sought discovery. Major advances in hadron spectroscopy will be possible, which will be powerful probes of low energy QCD. Upgrade II potentially will have the highest sensitivity of all the LHC experiments on the Higgs to charm-quark couplings. Generically, the new physics mass scale probed, for fixed couplings, will almost double compared with the pre-HL-LHC era; this extended reach for flavour physics is similar to that which would be achieved by the HE-LHC proposal for the energy frontier

    LHCb upgrade software and computing : technical design report

    Get PDF
    This document reports the Research and Development activities that are carried out in the software and computing domains in view of the upgrade of the LHCb experiment. The implementation of a full software trigger implies major changes in the core software framework, in the event data model, and in the reconstruction algorithms. The increase of the data volumes for both real and simulated datasets requires a corresponding scaling of the distributed computing infrastructure. An implementation plan in both domains is presented, together with a risk assessment analysis

    Multidifferential study of identified charged hadron distributions in ZZ-tagged jets in proton-proton collisions at s=\sqrt{s}=13 TeV

    Full text link
    Jet fragmentation functions are measured for the first time in proton-proton collisions for charged pions, kaons, and protons within jets recoiling against a ZZ boson. The charged-hadron distributions are studied longitudinally and transversely to the jet direction for jets with transverse momentum 20 <pT<100< p_{\textrm{T}} < 100 GeV and in the pseudorapidity range 2.5<η<42.5 < \eta < 4. The data sample was collected with the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.64 fb1^{-1}. Triple differential distributions as a function of the hadron longitudinal momentum fraction, hadron transverse momentum, and jet transverse momentum are also measured for the first time. This helps constrain transverse-momentum-dependent fragmentation functions. Differences in the shapes and magnitudes of the measured distributions for the different hadron species provide insights into the hadronization process for jets predominantly initiated by light quarks.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-013.html (LHCb public pages
    corecore