40 research outputs found

    Protocol for the development and analysis of the Oxford and Reading Cognitive Comorbidity, Frailty and Ageing Research Database - Electronic Patient Records (ORCHARD-EPR)

    Get PDF
    Background Hospital electronic patient records (EPRs) offer the opportunity to exploit large-scale routinely acquired data at relatively low cost and without selection. EPRs provide considerably richer data, and in real-time, than retrospective administrative data sets in which clinical complexity is often poorly captured. With population ageing, a wide range of hospital specialties now manage older people with multimorbidity, frailty and associated poor outcomes. We, therefore, set-up the Oxford and Reading Cognitive Comorbidity, Frailty and Ageing Research Database-Electronic Patient Records (ORCHARD-EPR) to facilitate clinically meaningful research in older hospital patients, including algorithm development, and to aid medical decision-making, implementation of guidelines, and inform policy. Methods and analysis ORCHARD-EPR uses routinely acquired individual patient data on all patients aged ≥65 years with unplanned admission or Same Day Emergency Care unit attendance at four acute general hospitals serving a population of >800 000 (Oxfordshire, UK) with planned extension to the neighbouring Berkshire regional hospitals (>1 000 000). Data fields include diagnosis, comorbidities, nursing risk assessments, frailty, observations, illness acuity, laboratory tests and brain scan images. Importantly, ORCHARD-EPR contains the results from mandatory hospital-wide cognitive screening (≥70 years) comprising the 10-point Abbreviated-Mental-Test and dementia and delirium diagnosis (Confusion Assessment Method—CAM). Outcomes include length of stay, delayed transfers of care, discharge destination, readmissions and death. The rich multimodal data are further enhanced by linkage to secondary care electronic mental health records. Selection of appropriate subgroups or linkage to existing cohorts allows disease-specific studies. Over 200 000 patient episodes are included to date with data collection ongoing of which 129 248 are admissions with a length of stay ≥1 day in 64 641 unique patients. Ethics and dissemination ORCHARD-EPR is approved by the South Central Oxford C Research Ethics Committee (ref: 23/SC/0258). Results will be widely disseminated through peer-reviewed publications and presentations at conferences, and regional meetings to improve hospital data quality and clinical services

    Common, low-frequency, rare, and ultra-rare coding variants contribute to COVID-19 severity

    Get PDF
    The combined impact of common and rare exonic variants in COVID-19 host genetics is currently insufficiently understood. Here, common and rare variants from whole-exome sequencing data of about 4000 SARS-CoV-2-positive individuals were used to define an interpretable machine-learning model for predicting COVID-19 severity. First, variants were converted into separate sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. The Boolean features selected by these logistic models were combined into an Integrated PolyGenic Score that offers a synthetic and interpretable index for describing the contribution of host genetics in COVID-19 severity, as demonstrated through testing in several independent cohorts. Selected features belong to ultra-rare, rare, low-frequency, and common variants, including those in linkage disequilibrium with known GWAS loci. Noteworthily, around one quarter of the selected genes are sex-specific. Pathway analysis of the selected genes associated with COVID-19 severity reflected the multi-organ nature of the disease. The proposed model might provide useful information for developing diagnostics and therapeutics, while also being able to guide bedside disease management. © 2021, The Author(s)

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    The legacy of the experimental hadron physics programme at COSY

    Get PDF

    The Regulation of on-the-ball Offences: Challenges in Court

    No full text
    Following the Court of Appeal’s judgment in 'R v Barnes' it was argued that on-the-ball contacts in sport, in breach of the rules of the game, were unlikely to be classed as criminal. It was perceived that these types of injury-causing acts were not sufficiently grave to warrant criminality and were better regulated internally or by the civil law. However, the imprisonment of amateur footballer Mark Chapman, for an injury-causing tackle, has challenged this viewpoint. This paper will explore the incident in 'Chapman' in the light of 'Barnes,' and argues, that the boundaries of criminality in contact sports are increasingly difficult to ascertain. It will revisit case law concerning incidents of on-the-ball offences and assess whether the prosecution and subsequent guilty plea in 'Chapman' could have been an anticipated outcome. Internal disciplinary mechanisms will be scrutinised to whether they can impact on the criminal law’s involvement. Finally the paper will put forward that the amateur status of the participant may have been a key factor in the resulting finding of criminality
    corecore