31 research outputs found

    A gaming app developed for vestibular rehabilitation improves the accuracy of performance and engagement with exercises

    Get PDF
    IntroductionVestibular hypofunction is associated with dizziness, imbalance, and blurred vision with head movement. Vestibular rehabilitation is the gold standard recommendation to decrease symptoms and improve postural stability. The Clinical Practice Guidelines for vestibular hypofunction suggest home exercises 3–5 times daily, but patient adherence is a problem, with compliance rates often below 50%.MethodsAn app was developed to increase engagement with home exercises by providing exercises as games. This study compared the accuracy of exercise performance in a one-time session using the app versus no-app and gathered participant feedback on using the app for vestibulo-ocular reflex (VOR) and balance exercises. The app was tested with 40 adults (20 women), mean age of 67 ± 5.7 years, with symptomatic unilateral or bilateral vestibular hypofunction. Participants completed VOR exercises in pitch and yaw planes, weight-shift, and single-leg balance exercises using an inertial motion unit to move the character on the tablet screen. Participants were randomly assigned to begin the exercises with or without the app.ResultsResults show that during VOR exercises, participants achieved the prescribed frequency of head motion for the yaw plane (p ≤ 0.001) and reduced variability of head movement frequency in both the yaw (p ≤ 0.001) and pitch plane (p ≤ 0.001) in the app compared to the no-app condition. During weight-shifting exercises, a larger range of body motion was noted in the anteroposterior and mediolateral directions in the app compared to the no-app condition (p < 0.05). During single-leg balance exercises, pelvic motion was lower in the app versus no-app condition (p = 0.02). Participants modified their exercise performance and corrected their mistakes to a greater extent when they used the app during the VOR exercises. Participants agreed that they felt motivated while playing the games (97%) and felt motivated by the trophies (92%). They agreed that the app would help them perform the exercises at home (95%), improve their rehab performance (95%) and that it was fun to do the exercises using the app (93%).DiscussionThe results of this study show that technology that is interactive and provides feedback can be used to increase accuracy and engagement with exercises

    Human ClCa1 modulates anionic conduction of calcium-dependent chloride currents

    Get PDF
    Proteins of the CLCA gene family including the human ClCa1 (hClCa1) have been suggested to constitute a new family of chloride channels mediating Ca2+-dependent Cl− currents. The present study examines the relationship between the hClCa1 protein and Ca2+-dependent Cl− currents using heterologous expression of hClCa1 in HEK293 and NCIH522 cell lines and whole cell recordings. By contrast to previous reports claiming the absence of Cl− currents in HEK293 cells, we find that HEK293 and NCIH522 cell lines express constitutive Ca2+-dependent Cl− currents and show that hClCa1 increases the amplitude of Ca2+-dependent Cl− currents in those cells. We further show that hClCa1 does not modify the permeability sequence but increases the Cl− conductance while decreasing the GSCN−/GCl− conductance ratio from ∼2–3 to ∼1. We use an Eyring rate theory (two barriers, one site channel) model and show that the effect of hClCa1 on the anionic channel can be simulated by its action on lowering the first and the second energy barriers. We conclude that hClCa1 does not form Ca2+-dependent Cl− channels per se or enhance the trafficking/insertion of constitutive channels in the HEK293 and NCIH522 expression systems. Rather, hClCa1 elevates the single channel conductance of endogenous Ca2+-dependent Cl− channels by lowering the energy barriers for ion translocation through the pore

    Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

    Get PDF
    Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation

    A note on transfer of stimulus control in the delayed-cue procedure: facilitation by an overt differential response.

    No full text
    This case study describes initially unsuccessful attempts to use the delayed-cue procedure to teach conditional discriminations to an individual with moderate mental retardation. The task was matching printed-word comparison stimuli to dictated-name sample stimuli. In three experiments, the subject typically waited for the delayed cue unless differential responses to the dictated samples (repeating the sample names) were required. Hence, the study provides an example of a way to make the delayed-cue method more effective. The stimulus control bases for the results are discussed

    Implementation of a primary-tertiary shared care model to improve the detection of familial hypercholesterolaemia (FH): a mixed methods pre-post implementation study protocol

    No full text
    Introduction Familial hypercholesterolaemia (FH) is an autosomal dominant inherited disorder of lipid metabolism and a preventable cause of premature cardiovascular disease. Current detection rates for this highly treatable condition are low. Early detection and management of FH can significantly reduce cardiac morbidity and mortality. This study aims to implement a primary-tertiary shared care model to improve detection rates for FH. The primary objective is to evaluate the implementation of a shared care model and support package for genetic testing of FH. This protocol describes the design and methods used to evaluate the implementation of the shared care model and support package to improve the detection of FH.Methods and analysis This mixed methods pre-post implementation study design will be used to evaluate increased detection rates for FH in the tertiary and primary care setting. The primary-tertiary shared care model will be implemented at NSW Health Pathology and Sydney Local Health District in NSW, Australia, over a 12-month period. Implementation of the shared care model will be evaluated using a modification of the implementation outcome taxonomy and will focus on the acceptability, evidence of delivery, appropriateness, feasibility, fidelity, implementation cost and timely initiation of the intervention. Quantitative pre-post and qualitative semistructured interview data will be collected. It is anticipated that data relating to at least 62 index patients will be collected over this period and a similar number obtained for the historical group for the quantitative data. We anticipate conducting approximately 20 interviews for the qualitative data.Ethics and dissemination Ethical approval has been granted by the ethics review committee (Royal Prince Alfred Hospital Zone) of the Sydney Local Health District (Protocol ID: X23-0239). Findings will be disseminated through peer-reviewed publications, conference presentations and an end-of-study research report to stakeholders

    Enhancing Audio Description: accessible filmmaking, sound design and the importance of educating filmmakers

    No full text
    The Enhancing Audio Description project explored the design of an alternative to traditional Audio Description for film and television for visually impaired audiences, by maximising the potential of sound design strategies for storytelling. The project’s methodology sits within the field of accessible filmmaking, advocating for the integration of accessibility strategies to creative workflows while also acknowledging their artistic potential. The present article explores the use of the Enhancing Audio Description (EAD) methods by a group of film students and recent graduates in the creation of a short film, while also discussing the process and end result in the context of the lack of inclusion of education on accessibility in filmmaking degrees. The authors discuss how a lack of teaching in the field of accessibility to film students results in a reinforcement of harmful stereotypes that exclude disabled audiences. A greater interest in accessibility sparked at university level might contribute towards a more inclusive film industry

    Table_1_A gaming app developed for vestibular rehabilitation improves the accuracy of performance and engagement with exercises.DOCX

    No full text
    IntroductionVestibular hypofunction is associated with dizziness, imbalance, and blurred vision with head movement. Vestibular rehabilitation is the gold standard recommendation to decrease symptoms and improve postural stability. The Clinical Practice Guidelines for vestibular hypofunction suggest home exercises 3–5 times daily, but patient adherence is a problem, with compliance rates often below 50%.MethodsAn app was developed to increase engagement with home exercises by providing exercises as games. This study compared the accuracy of exercise performance in a one-time session using the app versus no-app and gathered participant feedback on using the app for vestibulo-ocular reflex (VOR) and balance exercises. The app was tested with 40 adults (20 women), mean age of 67 ± 5.7 years, with symptomatic unilateral or bilateral vestibular hypofunction. Participants completed VOR exercises in pitch and yaw planes, weight-shift, and single-leg balance exercises using an inertial motion unit to move the character on the tablet screen. Participants were randomly assigned to begin the exercises with or without the app.ResultsResults show that during VOR exercises, participants achieved the prescribed frequency of head motion for the yaw plane (p ≤ 0.001) and reduced variability of head movement frequency in both the yaw (p ≤ 0.001) and pitch plane (p ≤ 0.001) in the app compared to the no-app condition. During weight-shifting exercises, a larger range of body motion was noted in the anteroposterior and mediolateral directions in the app compared to the no-app condition (p DiscussionThe results of this study show that technology that is interactive and provides feedback can be used to increase accuracy and engagement with exercises.</p
    corecore