7 research outputs found

    Alberta Occupational Medicine Newsletter: Winter 1986

    No full text
    Editorial Comments -- Work and Well Being 1987 -- Change in Medical Services Branch -- Letters to the Editor -- The Effects of Vibrating Tools on the Hand and Arm -- New Guidelines from Alberta Community and Occupational Health -- WBC and Occupational Health Professionals: Expectations -- Product Evaluation: A Kit for Creating the Ergonomically Sound Work Station -- Tuberculosis in A Rural Auxilliary Hospital -- Influenza Vaccination Recommendations for Health Care Workers: Attitudes and Compliance -- Upcoming Conference

    Alberta Spinal Muscular Atrophy Newborn Screening—Results from Year 1 Pilot Project

    No full text
    Spinal muscular atrophy (SMA) is a progressive neuromuscular disease caused by biallelic pathogenic/likely pathogenic variants of the survival motor neuron 1 (SMN1) gene. Early diagnosis via newborn screening (NBS) and pre-symptomatic treatment are essential to optimize health outcomes for affected individuals. We developed a multiplex quantitative polymerase chain reaction (qPCR) assay using dried blood spot (DBS) samples for the detection of homozygous absence of exon 7 of the SMN1 gene. Newborns who screened positive were seen urgently for clinical evaluation. Confirmatory testing by multiplex ligation-dependent probe amplification (MLPA) revealed SMN1 and SMN2 gene copy numbers. Six newborns had abnormal screen results among 47,005 newborns screened during the first year and five were subsequently confirmed to have SMA. Four of the infants received SMN1 gene replacement therapy under 30 days of age. One infant received an SMN2 splicing modulator due to high maternally transferred AAV9 neutralizing antibodies (NAb), followed by gene therapy at 3 months of age when the NAb returned negative in the infant. Early data show that all five infants made excellent developmental progress. Based on one year of data, the incidence of SMA in Alberta was estimated to be 1 per 9401 live births

    TAF1 Variants are associated with dysmorphic features, intellectual disability, and neurological manifestations

    No full text
    We describe an X-linked genetic syndrome associated with mutations in TAF1 and manifesting with global developmental delay, intellectual disability (ID), characteristic facial dysmorphology, generalized hypotonia, and variable neurologic features, all in male individuals. Simultaneous studies using diverse strategies led to the identification of nine families with overlapping clinical presentations and affected by de novo or maternally inherited single-nucleotide changes. Two additional families harboring large duplications involving TAF1 were also found to share phenotypic overlap with the probands harboring single-nucleotide changes, but they also demonstrated a severe neurodegeneration phenotype. Functional analysis with RNA-seq for one of the families suggested that the phenotype is associated with downregulation of a set of genes notably enriched with genes regulated by E-box proteins. In addition, knockdown and mutant studies of this gene in zebrafish have shown a quantifiable, albeit small, effect on a neuronal phenotype. Our results suggest that mutations in TAF1 play a critical role in the development of this X-linked ID syndrome. © 2015 The Authors

    TAF1 Variants are associated with dysmorphic features, intellectual disability, and neurological manifestations

    No full text
    We describe an X-linked genetic syndrome associated with mutations in TAF1 and manifesting with global developmental delay, intellectual disability (ID), characteristic facial dysmorphology, generalized hypotonia, and variable neurologic features, all in male individuals. Simultaneous studies using diverse strategies led to the identification of nine families with overlapping clinical presentations and affected by de novo or maternally inherited single-nucleotide changes. Two additional families harboring large duplications involving TAF1 were also found to share phenotypic overlap with the probands harboring single-nucleotide changes, but they also demonstrated a severe neurodegeneration phenotype. Functional analysis with RNA-seq for one of the families suggested that the phenotype is associated with downregulation of a set of genes notably enriched with genes regulated by E-box proteins. In addition, knockdown and mutant studies of this gene in zebrafish have shown a quantifiable, albeit small, effect on a neuronal phenotype. Our results suggest that mutations in TAF1 play a critical role in the development of this X-linked ID syndrome. © 2015 The Authors

    TAF1 Variants Are Associated with Dysmorphic Features, Intellectual Disability, and Neurological Manifestations

    Get PDF
    We describe an X-linked genetic syndrome associated with mutations in TAF1 and manifesting with global developmental delay, intellectual disability (ID), characteristic facial dysmorphology, generalized hypotonia, and variable neurologic features, all in male individuals. Simultaneous studies using diverse strategies led to the identification of nine families with overlapping clinical presentations and affected by de novo or maternally inherited single-nucleotide changes. Two additional families harboring large duplications involving TAF1 were also found to share phenotypic overlap with the probands harboring single-nucleotide changes, but they also demonstrated a severe neurodegeneration phenotype. Functional analysis with RNA-seq for one of the families suggested that the phenotype is associated with downregulation of a set of genes notably enriched with genes regulated by E-box proteins. In addition, knockdown and mutant studies of this gene in zebrafish have shown a quantifiable, albeit small, effect on a neuronal phenotype. Our results suggest that mutations in TAF1 play a critical role in the development of this X-linked ID syndrome
    corecore