41 research outputs found

    Atherosclerosis and Thrombosis: Insights from Large Animal Models

    Get PDF
    Atherosclerosis and its thrombotic complications are responsible for remarkably high numbers of deaths. The combination of in vitro, ex vivo, and in vivo experimental approaches has largely contributed to a better understanding of the mechanisms underlying the atherothrombotic process. Indeed, different animal models have been implemented in atherosclerosis and thrombosis research in order to provide new insights into the mechanisms that have already been outlined in isolated cells and protein studies. Yet, although no model completely mimics the human pathology, large animal models have demonstrated better suitability for translation to humans. Indeed, direct translation from mice to humans should be taken with caution because of the well-reported species-related differences. This paper provides an overview of the available atherothrombotic-like animal models, with a particular focus on large animal models of thrombosis and atherosclerosis, and examines their applicability for translational research purposes as well as highlights species-related differences with humans

    Alternative c3 complement system : Lipids and atherosclerosis

    Get PDF
    Altres ajuts: Fundación Jesus SerraAltres ajuts: Fundación de Investigación CardiovascularAltres ajuts: Fondo Europeo de Desarrollo Regional (FEDER)Familial hypercholesterolemia (FH) is increasingly associated with inflammation, a phenotype that persists despite treatment with lipid lowering therapies. The alternative C3 complement system (C3), as a key inflammatory mediator, seems to be involved in the atherosclerotic process; however, the relationship between C3 and lipids during plaque progression remains unknown. The aim of the study was to investigate by a systems biology approach the role of C3 in relation to lipoprotein levels during atherosclerosis (AT) progression and to gain a better understanding on the effects of C3 products on the phenotype and function of human lipid-loaded vascular smooth muscle cells (VSMCs). By mass spectrometry and differential proteomics, we found the extracellular matrix (ECM) of human aortas to be enriched in active components of the C3 complement system, with a significantly different proteomic signature in AT segments. Thus, C3 products were more abundant in AT-ECM than in macroscopically normal segments. Furthermore, circulating C3 levels were significantly elevated in FH patients with subclinical coronary AT, evidenced by computed tomographic angiography. However, no correlation was identified between circulating C3 levels and the increase in plaque burden, indicating a local regulation of the C3 in AT arteries. In cell culture studies of human VSMCs, we evidenced the expression of C3, C3aR (anaphylatoxin receptor) and the integrin α β receptor for C3b/iC3b (RT-PCR and Western blot). C3mRNA was up-regulated in lipid-loaded human VSMCs, and C3 protein significantly increased in cell culture supernatants, indicating that the C3 products in the AT-ECM have a local vessel-wall niche. Interestingly, C3a and iC3b (C3 active fragments) have functional effects on VSMCs, significantly reversing the inhibition of VSMC migration induced by aggregated LDL and stimulating cell spreading, organization of F-actin stress fibers and attachment during the adhesion of lipid-loaded human VSMCs. This study, by using a systems biology approach, identified molecular processes involving the C3 complement system in vascular remodeling and in the progression of advanced human atherosclerotic lesions

    Cerebellar alterations in a model of Down syndrome: The role of the Dyrk1A gene

    Get PDF
    Down syndrome (DS) is characterized by a marked reduction in the size of the brain and cerebellum. These changes play an important role in the motor alterations and cognitive disabilities observed in this condition. The Ts65Dn (TS) mouse, the most commonly used model of DS, reflects many DS phenotypes, including alterations in cerebellar morphology. One of the genes that is overexpressed in both individuals with DS and TS mice is DYRK1A/Dyrk1A (dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A), which has been implicated in the altered cerebellar structural and functional phenotypes observed in both populations. The aim of this study was to evaluate the effect of Dyrk1A on different alterations observed in the cerebellum of TS animals. TS mice were crossed with Dyrk1A +/- KO mice to obtain mice with a triplicate segment of Mmu16 that included Dyrk1A (TS +/+/+), mice with triplicate copies of the same genes that carried only two copies of Dyrk1A (TS +/+/-), euploid mice that expressed a normal dose of Dyrk1A (CO +/+) and CO animals with a single copy of Dyrk1A (CO +/-). Male mice were used for all experiments. The normalization of the Dyrk1A gene dosage did not rescue the reduced cerebellar volume. However, it increased the size of the granular and molecular layers, the densities of granular and Purkinje cells, and dendritic arborization. Furthermore, it improved the excitatory/inhibitory balance and walking pattern of TS +/+/- mice. These results support the hypothesis that Dyrk1A is involved in some of the structural and functional cerebellar phenotypes observed in the TS mouse model.This work was supported by grants from the Jerome Lejeune Foundation and Fundación Tatiana Pérez de Guzmán el Bueno and the Spanish Ministry of Economy and Competitiveness (PSI-2016-76194-R, AEI/FEDER, EU) and “Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, CB06/05/0037)” from Spain

    Influence of geographical latitude on vitamin D status:cross-sectional results from the BiomarCaRE consortium

    Get PDF
    Even though sunlight is viewed as the most important determinant of 25-hydroxyvitamin D (25[OH]D) status, several European studies have observed higher 25(OH)D concentrations among north-Europeans than south-Europeans. We studied the association between geographical latitude (derived from ecological data) and 25(OH)D status in 6 European countries by using harmonized immunoassay data from 81,084 participants in the Biomarkers for Cardiovascular Risk Assessment in Europe (BiomarCaRE) project (male sex 48.9%; median age 50.8 years; examination period 1984 to 2014). Quantile regression models, adjusted for age, sex, decade and calendar week of sampling, and time from sampling to analysis, were used for between-country comparisons. Up until the median percentile, the ordering of countries by 25(OH)D status (from highest to lowest) was as follows: Sweden (at 65.6 to 63.8 oN), Germany (at 48.4 oN), Finland (at 65.0 to 60.2 oN), Italy (at 45.6 to 41.5 oN), Scotland (at 58.2 to 55.1 oN), and Spain (at 41.5 oN). From the 75th percentile and upwards, Finland had higher values than Germany. As an example, using the Swedish cohort as comparator, the median 25(OH)D concentration was 3.03, 3.28, 5.41, 6.54, and 9.28 ng/mL lower in the German, Finnish, Italian, Scottish, and Spanish cohort, respectively (P-value < 0.001 for all comparisons). The ordering of countries was highly consistent in subgroup analyses by sex, age, and decade and season of sampling. In conclusion, we confirmed the previous observation of a north-to-south gradient of 25(OH)D status in Europe, with higher percentile values among north-Europeans than south-Europeans

    Development of a long noncoding RNA-based machine learning model to predict COVID-19 in-hospital mortality

    Get PDF
    Tools for predicting COVID-19 outcomes enable personalized healthcare, potentially easing the disease burden. This collaborative study by 15 institutions across Europe aimed to develop a machine learning model for predicting the risk of in-hospital mortality post-SARS-CoV-2 infection. Blood samples and clinical data from 1286 COVID-19 patients collected from 2020 to 2023 across four cohorts in Europe and Canada were analyzed, with 2906 long non-coding RNAs profiled using targeted sequencing. From a discovery cohort combining three European cohorts and 804 patients, age and the long non-coding RNA LEF1-AS1 were identified as predictive features, yielding an AUC of 0.83 (95% CI 0.82-0.84) and a balanced accuracy of 0.78 (95% CI 0.77-0.79) with a feedforward neural network classifier. Validation in an independent Canadian cohort of 482 patients showed consistent performance. Cox regression analysis indicated that higher levels of LEF1-AS1 correlated with reduced mortality risk (age-adjusted hazard ratio 0.54, 95% CI 0.40-0.74). Quantitative PCR validated LEF1-AS1's adaptability to be measured in hospital settings. Here, we demonstrate a promising predictive model for enhancing COVID-19 patient management.</p

    LDL-Induced Impairment of Human Vascular Smooth Muscle Cells Repair Function Is Reversed by HMG-CoA Reductase Inhibition

    Get PDF
    Growing human atherosclerotic plaques show a progressive loss of vascular smooth muscle cells (VSMC) becoming soft and vulnerable. Lipid loaded-VSMC show impaired vascular repair function and motility due to changes in cytoskeleton proteins involved in cell-migration. Clinical benefits of statins reducing coronary events have been related to repopulation of vulnerable plaques with VSMC. Here, we investigated whether HMG-CoA reductase inhibition with rosuvastatin can reverse the effects induced by atherogenic concentrations of LDL either in the native (nLDL) form or modified by aggregation (agLDL) on human VSMC motility. Using a model of wound repair, we showed that treatment of human coronary VSMC with rosuvastatin significantly prevented (and reversed) the inhibitory effect of nLDL and agLDL in the repair of the cell depleted areas. In addition, rosuvastatin significantly abolished the agLDL-induced dephosphorylation of myosin regulatory light chain as demonstrated by 2DE-electrophoresis and mass spectrometry. Besides, confocal microscopy showed that rosuvastatin enhances actin-cytoskeleton reorganization during lipid-loaded-VSMC attachment and spreading. The effects of rosuvastatin on actin-cytoskeleton dynamics and cell migration were dependent on ROCK-signalling. Furthermore, rosuvastatin caused a significant increase in RhoA-GTP in the cytosol of VSMC. Taken together, our study demonstrated that inhibition of HMG-CoA reductase restores the migratory capacity and repair function of VSMC that is impaired by native and aggregated LDL. This mechanism may contribute to the stabilization of lipid-rich atherosclerotic plaques afforded by statins

    Towards an understanding of the cloud formation potential of carbonaceous aerosol: laboratory and field studies

    Get PDF
    It is well known that atmospheric aerosols provide the sites for forming cloud droplets, and can affect the Earth's radiation budget through their interactions with clouds. The ability of aerosols to act as cloud condensation nuclei is a strong function of their chemical composition and size. The compositional complexity of aerosol prohibits their explicit treatment in atmospheric models of aerosol-cloud interactions. Nevertheless, the cumulative impact of organics on CCN activity is still required, as carbonaceous material can constitute up to 90% of the total aerosol, 10-70% of which is water soluble. Therefore it is necessary to characterize the water soluble organic carbon fraction by CCN activation, droplet growth kinetics, and surface tension measurements. In this thesis, we investigate the water soluble properties, such as surface tension, solubility, and molecular weight, of laboratory and ambient aerosols and their effect on CCN formation. A mechanism called Curvature Enhanced Solubility is proposed and shown to explain the apparent increased solubility of organics. A new method, called Köhler Theory Analysis, which is completely new, fast, and uses minimal amount of sample was developed to infer the molar volume (or molar mass) of organics. Due to the success of the technique in predicting the molar volume of laboratory samples, it was applied to aerosols collected in Mexico City. Additionally the surface tension, CCN activity, and droplet growth kinetics of these urban polluted aerosols were investigated. Studies performed for the water soluble components showed that the aerosols in Mexico City have surfactants present, can readily become CCN, and have growth similar to ammonium sulfate. Finally, aerosols from three different polluted sources, urban, bovine, and ship emissions, were collected and characterized. The data assembled was used to predict CCN concentrations and access our understanding of the system. From these analyses, it was evident that knowledge of the chemical composition and mixing state of the aerosol is necessary to achieve agreement between observations and predictions. The data obtained in this thesis can be introduced and used as constraints in aerosol-cloud interaction parameterizations developed for global climate models, which could lead to improvements in the indirect effect of aerosols.Ph.D.Committee Chair: Nenes, Athanasios; Committee Member: Huey, Greg; Committee Member: Meredith, Carson; Committee Member: Teja, Amyn; Committee Member: Weber, Rodney J

    Moderate Beer Intake and Cardiovascular Health in Overweight Individuals

    No full text
    Consistent epidemiological evidence indicates that low-to-moderate alcohol consumption is inversely associated with cardiovascular event presentation, while high levels of alcohol intake are associated to increased cardiovascular risk. Little is known on the effects of moderate beer intake in the metabolic syndrome. The aim of this study is to investigate the effects of moderate and regular daily intake of beer with meals in overweight (body mass index (BMI) of 28&ndash;29.9 kg/m2) or obese class 1 (BMI of 30&ndash;35 kg/m2) individuals without other cardiovascular risk factors (dyslipidemia, type 2-diabetes, hypertension) focusing on the effects related to changes in weight, in lipoproteins and vascular endothelial function. We have performed an open, prospective two-arms longitudinal crossover study to investigate the effects associated with regular consumption (four week) of alcohol-free-beer (0 g alcohol/day) or traditional-beer (30 g alcohol/day in men and 15 g alcohol/day in women) on anthropometrical and biochemical parameters, liver and kidney function biomarkers, and vascular endothelial function. After four-week intervention with traditional and/or alcohol-free beer, BMI did not show any significant change and values for liver and kidney functions were within the normal levels. Moderate traditional beer intake did not affect lipid levels&mdash;however it significantly increased the antioxidant capacity of high density lipoprotein (HDL). In addition, apoB-depleted serum (after the four-week intervention period) showed a higher potential to promote cholesterol efflux from macrophages. Beer consumption did not induce vascular endothelial dysfunction or stiffness. In summary, our results based on a 12-week prospective study provide evidence that moderate intake of beer (traditional and alcohol-free) does not exert vascular detrimental effects nor increases body weight in obese healthy individuals. In contrast, moderate intake of beer increases the anti-oxidative properties of HDL and facilitates cholesterol efflux, which may prevent lipid deposition in the vessel wall
    corecore